Seguir
Andreas Gerhardus
Andreas Gerhardus
Institute of Data Science, German Aerospace Center (DLR)
Dirección de correo verificada de dlr.de
Título
Citado por
Citado por
Año
Causal inference for time series
J Runge, A Gerhardus, G Varando, V Eyring, G Camps-Valls
Nature Reviews Earth & Environment 4 (7), 487-505, 2023
1502023
High-recall causal discovery for autocorrelated time series with latent confounders
A Gerhardus, J Runge
Advances in Neural Information Processing Systems 33, 12615-12625, 2020
1242020
Discovering causal relations and equations from data
G Camps-Valls, A Gerhardus, U Ninad, G Varando, G Martius, ...
Physics Reports 1044, 1-68, 2023
712023
Search for the effect of massive bodies on atomic spectra and constraints on Yukawa-type interactions of scalar particles
N Leefer, A Gerhardus, D Budker, VV Flambaum, YV Stadnik
Physical review letters 117 (27), 271601, 2016
592016
Quantum periods of Calabi–Yau fourfolds
A Gerhardus, H Jockers
Nuclear Physics B 913, 425-474, 2016
422016
Dual pairs of gauged linear sigma models and derived equivalences of Calabi–Yau threefolds
A Gerhardus, H Jockers
Journal of Geometry and Physics 114, 223-259, 2017
272017
The geometry of gauged linear sigma model correlation functions
A Gerhardus, H Jockers, U Ninad
Nuclear Physics B 933, 65-133, 2018
152018
A spatiotemporal stochastic climate model for benchmarking causal discovery methods for teleconnections
XA Tibau, C Reimers, A Gerhardus, J Denzler, V Eyring, J Runge
Environmental Data Science 1, e12, 2022
142022
Supersymmetric black holes and the SJT/nSCFT1 correspondence
S Förste, A Gerhardus, J Kames-King
Journal of High Energy Physics 2021 (1), 1-44, 2021
112021
Characterization of causal ancestral graphs for time series with latent confounders
A Gerhardus
The Annals of Statistics 52 (1), 103-130, 2024
82024
Selecting robust features for machine-learning applications using multidata causal discovery
T Beucler, FIH Tam, MS Gomez, J Runge, A Gerhardus
Environmental Data Science 2, e27, 2023
72023
Bootstrap aggregation and confidence measures to improve time series causal discovery
K Debeire, A Gerhardus, J Runge, V Eyring
Causal Learning and Reasoning, 979-1007, 2024
52024
Projecting infinite time series graphs to finite marginal graphs using number theory
A Gerhardus, J Wahl, S Faltenbacher, U Ninad, J Runge
arXiv preprint arXiv:2310.05526, 2023
52023
Causal inference for temporal patterns
ND Reiter, A Gerhardus, J Runge
arXiv preprint arXiv:2205.15149, 2022
22022
Causal discovery with endogenous context variables
W Günther, OI Popescu, M Rabel, U Ninad, A Gerhardus, J Runge
arXiv preprint arXiv:2412.04981, 2024
12024
Triangulation for causal loop diagrams: constructing biopsychosocial models using group model building, literature review, and causal discovery
JF Uleman, M Luijten, WF Abdo, J Vyrastekova, A Gerhardus, J Runge, ...
npj Complexity 1 (1), 19, 2024
12024
Causal modeling in multi-context systems: Distinguishing multiple context-specific causal graphs which account for observational support
M Rabel, W Günther, J Runge, A Gerhardus
arXiv preprint arXiv:2410.20405, 2024
12024
Causal inference on process graphs, part II: Causal structure and effect identification
ND Reiter, J Wahl, A Gerhardus, J Runge
arXiv preprint arXiv:2406.17422, 2024
12024
A global Markov property for solutions of stochastic difference equations and the corresponding full time graphs
T Hochsprung, J Runge, A Gerhardus
40th Conference on Uncertainty in Artificial Intelligence 244, 1698-1726, 2024
12024
Non-parametric Conditional Independence Testing for Mixed Continuous-Categorical Variables: A Novel Method and Numerical Evaluation
OI Popescu, A Gerhardus, J Runge
arXiv preprint arXiv:2310.11132, 2023
12023
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20