Seguir
Haitao Mao
Título
Citado por
Citado por
Año
Exploring the potential of large language models (llms) in learning on graphs
Z Chen, H Mao, H Li, W Jin, H Wen, X Wei, S Wang, D Yin, W Fan, H Liu, ...
ACM SIGKDD Explorations Newsletter 25 (2), 42-61, 2024
2782024
Evaluating graph neural networks for link prediction: Current pitfalls and new benchmarking
J Li, H Shomer, H Mao, S Zeng, Y Ma, N Shah, J Tang, D Yin
Advances in Neural Information Processing Systems 36, 2023
582023
Demystifying structural disparity in graph neural networks: Can one size fit all?
H Mao, Z Chen, W Jin, H Han, Y Ma, T Zhao, N Shah, J Tang
Advances in neural information processing systems 36, 2023
572023
Label-free node classification on graphs with large language models (llms)
Z Chen, H Mao, H Wen, H Han, W Jin, H Zhang, H Liu, J Tang
International Conference on Learning Representations, 2024
562024
Graph foundation models
H Mao, Z Chen, W Tang, J Zhao, Y Ma, T Zhao, N Shah, M Galkin, J Tang
Forty-first International Conference on Machine Learning, 2024
47*2024
Amazon-M2: A Multilingual Multi-locale Shopping Session Dataset for Recommendation and Text Generation
W Jin*, H Mao*, Z Li, H Jiang, C Luo, H Wen, H Han, H Lu, Z Wang, R Li, ...
Advances in neural information processing systems 36, 2023
392023
Source Free Graph Unsupervised Domain Adaptation
H Mao, L Du, Y Zheng, Q Fu, Z Li, X Chen, S Han, D Zhang
Proceedings of the 17th ACM International Conference on Web Search and Data …, 2024
332024
A Large Scale Search Dataset for Unbiased Learning to Rank
H Mao*, L Zou*, X Chu, J Tang, W Ye, S Wang, D Yin
Advances in Neural Information Processing Systems 35, 2022
232022
Revisiting link prediction: A data perspective
H Mao, J Li, H Shomer, B Li, W Fan, Y Ma, T Zhao, N Shah, J Tang
International Conference on Learning Representations, 2024
222024
Graph machine learning in the era of large language models (llms)
W Fan, S Wang, J Huang, Z Chen, Y Song, W Tang, H Mao, H Liu, X Liu, ...
arXiv preprint arXiv:2404.14928, 2024
212024
Alternately optimized graph neural networks
H Han, X Liu, H Mao, MA Torkamani, F Shi, V Lee, J Tang
International Conference on Machine Learning, 12411-12429, 2023
142023
Neural scaling laws on graphs
J Liu, H Mao, Z Chen, T Zhao, N Shah, J Tang
Learning on Graphs Conference 2024, 2024
132024
Neuron Campaign for Initialization Guided by Information Bottleneck Theory
H Mao, X Chen, Q Fu, L Du, S Han, D Zhang
Proceedings of the 30th ACM International Conference on Information …, 2021
122021
A Survey to Recent Progress Towards Understanding In-Context Learning
H Mao, G Liu, Y Ma, R Wang, J Tang
NAACL 2025, 2025
6*2025
Text-space Graph Foundation Models: Comprehensive Benchmarks and New Insights
Z Chen, H Mao, J Liu, Y Song, B Li, W Jin, B Fatemi, A Tsitsulin, B Perozzi, ...
Advances in neural information processing systems 37, 2024
62024
Lpformer: An adaptive graph transformer for link prediction
H Shomer, Y Ma, H Mao, J Li, B Wu, J Tang
Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and …, 2024
5*2024
Whole Page Unbiased Learning to Rank
H Mao, L Zou, Y Zheng, J Tang, X Chu, J Zhao, Q Wang, D Yin
Proceedings of the ACM on Web Conference 2024, 1431-1440, 2024
52024
Company competition graph
Y Zhang, Y Lu, H Mao, J Huang, C Zhang, X Li, R Dai
arXiv preprint arXiv:2304.00323, 2023
52023
Neuron with Steady Response Leads to Better Generalization
H Mao*, Q Fu*, L Du*, X Chen, W Fang, S Han, D Zhang
Advances in neural information processing systems 35, 2022
52022
Addressing shortcomings in fair graph learning datasets: Towards a new benchmark
X Qian, Z Guo, J Li, H Mao, B Li, S Wang, Y Ma
Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and …, 2024
42024
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20