Seguir
Dmitry Vetrov
Dmitry Vetrov
Professor of Computer Science at Constructor University, Bremen
Dirección de correo verificada de constructor.university - Página principal
Título
Citado por
Citado por
Año
Averaging weights leads to wider optima and better generalization
P Izmailov, D Podoprikhin, T Garipov, D Vetrov, AG Wilson
arXiv preprint arXiv:1803.05407, 2018
18202018
Variational dropout sparsifies deep neural networks
D Molchanov, A Ashukha, D Vetrov
International conference on machine learning, 2498-2507, 2017
11142017
Tensorizing neural networks
A Novikov, D Podoprikhin, A Osokin, DP Vetrov
Advances in neural information processing systems 28, 2015
10922015
A simple baseline for bayesian uncertainty in deep learning
WJ Maddox, P Izmailov, T Garipov, DP Vetrov, AG Wilson
Advances in neural information processing systems 32, 2019
9622019
Loss surfaces, mode connectivity, and fast ensembling of dnns
T Garipov, P Izmailov, D Podoprikhin, DP Vetrov, AG Wilson
Advances in neural information processing systems 31, 2018
8042018
Evaluation of stability of k-means cluster ensembles with respect to random initialization
LI Kuncheva, DP Vetrov
IEEE transactions on pattern analysis and machine intelligence 28 (11), 1798 …, 2006
4252006
Spatially Adaptive Computation Time for Residual Networks
M Figurnov, M Collins, Y Zhu, L Zhang, J Huang, DP Vetrov, ...
4192017
Pitfalls of in-domain uncertainty estimation and ensembling in deep learning
A Ashukha, A Lyzhov, D Molchanov, D Vetrov
arXiv preprint arXiv:2002.06470, 2020
3892020
Entangled conditional adversarial autoencoder for de novo drug discovery
D Polykovskiy, A Zhebrak, D Vetrov, Y Ivanenkov, V Aladinskiy, ...
Molecular pharmaceutics 15 (10), 4398-4405, 2018
2752018
Structured bayesian pruning via log-normal multiplicative noise
K Neklyudov, D Molchanov, A Ashukha, DP Vetrov
Advances in Neural Information Processing Systems 30, 2017
2422017
Ultimate tensorization: compressing convolutional and fc layers alike
T Garipov, D Podoprikhin, A Novikov, D Vetrov
arXiv preprint arXiv:1611.03214, 2016
2402016
Breaking sticks and ambiguities with adaptive skip-gram
S Bartunov, D Kondrashkin, A Osokin, D Vetrov
artificial intelligence and statistics, 130-138, 2016
2322016
Controlling overestimation bias with truncated mixture of continuous distributional quantile critics
A Kuznetsov, P Shvechikov, A Grishin, D Vetrov
International Conference on Machine Learning, 5556-5566, 2020
2262020
Perforatedcnns: Acceleration through elimination of redundant convolutions
M Figurnov, A Ibraimova, DP Vetrov, P Kohli
Advances in neural information processing systems 29, 2016
1972016
Subspace inference for Bayesian deep learning
P Izmailov, WJ Maddox, P Kirichenko, T Garipov, D Vetrov, AG Wilson
Uncertainty in Artificial Intelligence, 1169-1179, 2020
1922020
Variational autoencoder with arbitrary conditioning
O Ivanov, M Figurnov, D Vetrov
arXiv preprint arXiv:1806.02382, 2018
1792018
Fast adaptation in generative models with generative matching networks
S Bartunov, DP Vetrov
arXiv preprint arXiv:1612.02192, 2016
157*2016
Hifi++: a unified framework for neural vocoding, bandwidth extension and speech enhancement
P Andreev, A Alanov, O Ivanov, D Vetrov
ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and …, 2023
100*2023
Greedy policy search: A simple baseline for learnable test-time augmentation
A Lyzhov, Y Molchanova, A Ashukha, D Molchanov, D Vetrov
Conference on uncertainty in artificial intelligence, 1308-1317, 2020
912020
Conditional generators of words definitions
A Gadetsky, I Yakubovskiy, D Vetrov
arXiv preprint arXiv:1806.10090, 2018
822018
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20