Seguir
Huijun Wu
Huijun Wu
Dirección de correo verificada de nudt.edu.cn
Título
Citado por
Citado por
Año
Adversarial examples on graph data: Deep insights into attack and defense
H Wu, C Wang, Y Tyshetskiy, A Docherty, K Lu, L Zhu
28th International Joint Conference on Artificial Intelligence (IJCAI), 2019
5122019
Hpdedup: A hybrid prioritized data deduplication mechanism for primary storage in the cloud
H Wu, C Wang, Y Fu, S Sakr, L Zhu, K Lu
33rd International Symposium on Mass Storage System and Technology (MSST), 2017
792017
A differentiated caching mechanism to enable primary storage deduplication in clouds
H Wu, C Wang, Y Fu, S Sakr, K Lu, L Zhu
IEEE Transactions on Parallel and Distributed Systems 29 (6), 1202-1216, 2018
282018
Sharing deep neural network models with interpretation
H Wu, C Wang, J Yin, K Lu, L Zhu
Proceedings of the 2018 World Wide Web Conference (WWW), 177-186, 2018
252018
Towards big data analytics across multiple clusters
D Wu, S Sakr, L Zhu, H Wu
2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid …, 2017
132017
Towards defense against adversarial attacks on graph neural networks via calibrated co-training
XG Wu, HJ Wu, X Zhou, X Zhao, K Lu
Journal of Computer Science and Technology 37 (5), 1161-1175, 2022
92022
Interpreting shared deep learning models via explicable boundary trees
H Wu, C Wang, J Yin, K Lu, L Zhu
arXiv preprint arXiv:1709.03730, 2017
92017
One size does not fit all: The case for chunking configuration in backup deduplication
H Wu, C Wang, K Lu, Y Fu, L Zhu
2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid …, 2018
62018
SMINT: Toward interpretable and robust model sharing for deep neural networks
H Wu, C Wang, R Nock, W Wang, J Yin, K Lu, L Zhu
ACM Transactions on the Web (TWEB) 14 (3), 1-28, 2020
52020
Leveraging free labels to power up heterophilic graph learning in weakly-supervised settings: An empirical study
X Wu, H Wu, R Wang, D Li, X Zhou, K Lu
European Conference on Machine Learning and Knowledge Discovery in Databases …, 2023
42023
Graphlearner: Graph node clustering with fully learnable augmentation
X Yang, E Min, K Liang, Y Liu, S Wang, S Zhou, H Wu, X Liu, E Zhu
Proceedings of the 32nd ACM International Conference on Multimedia (ACM MM …, 2024
22024
A case based deep neural network interpretability framework and its user study
R Nadeem, H Wu, H Paik, C Wang
Web Information Systems Engineering–WISE 2019: 20th International Conference …, 2019
22019
StageFS: A parallel file system optimizing metadata performance for SSD based clusters
H Wu, L Zhu, K Lu, G Li, D Wu
2016 IEEE Trustcom/BigDataSE/ISPA, 2147-2152, 2016
22016
Automatic and Aligned Anchor Learning Strategy for Multi-View Clustering
H Ma, S Wang, S Yu, S Liu, JJ Huang, H Wu, X Liu, E Zhu
Proceedings of the 32nd ACM International Conference on Multimedia (ACM MM), 2024
12024
Talos: A More Effective and Efficient Adversarial Defense for GNN Models Based on the Global Homophily of Graphs
D Li, H Wu, M Xie, X Wu, Z Wu, W Zhang
27th European Conference on Artificial Intelligence (ECAI 2024), 2024
1*2024
Optimizing HPC I/O Performance with Regression Analysis and Ensemble Learning
Z Liu, C Zhang, H Wu, J Fang, L Peng, G Ye, Z Tang
2023 IEEE International Conference on Cluster Computing (CLUSTER), 234-246, 2023
12023
Auto-tuning for HPC storage stack: an optimization perspective
Z Liu, J Wang, H Wu, Q Ma, L Peng, Z Tang
CCF Transactions on High Performance Computing, 1-24, 2024
2024
Perseus: Leveraging Common Data Patterns with Curriculum Learning for More Robust Graph Neural Networks
K Xia, H Wu, D Li, M Xie, R Wang, W Zhang
arXiv preprint arXiv:2410.12425, 2024
2024
Fully Decentralized Data Distribution for Exascale-HPC: End of the Provider-Demander Matching Puzzle
M Shao, W Zhang, R Wang, H Wu, Y Dai, K Lu
2024 IEEE International Conference on Cluster Computing (CLUSTER), 310-321, 2024
2024
Towards adaptive graph neural networks via solving prior-data conflicts
X Wu, H Wu, R Wang, X Zhou, K Lu
Frontiers of Information Technology & Electronic Engineering 25, 369–383, 2024
2024
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20