Seguir
Saee Gopal Paliwal
Saee Gopal Paliwal
AI Manager, Drug Discovery
Dirección de correo verificada de nvidia.com
Título
Citado por
Citado por
Año
Allostatic self-efficacy: A metacognitive theory of dyshomeostasis-induced fatigue and depression
KE Stephan, ZM Manjaly, CD Mathys, LAE Weber, S Paliwal, T Gard, ...
Frontiers in human neuroscience 10, 550, 2016
4732016
The structural connectivity of subthalamic deep brain stimulation correlates with impulsivity in Parkinson’s disease
PE Mosley, S Paliwal, K Robinson, T Coyne, P Silburn, M Tittgemeyer, ...
Brain 143 (7), 2235-2254, 2020
742020
Preclinical validation of therapeutic targets predicted by tensor factorization on heterogeneous graphs
S Paliwal, A de Giorgio, D Neil, JB Michel, AMB Lacoste
Scientific reports 10 (1), 18250, 2020
452020
The structural connectivity of discrete networks underlies impulsivity and gambling in Parkinson’s disease
PE Mosley, S Paliwal, K Robinson, T Coyne, P Silburn, M Tittgemeyer, ...
Brain 142 (12), 3917-3935, 2019
442019
A model-based analysis of impulsivity using a slot-machine gambling paradigm
S Paliwal, FH Petzschner, AK Schmitz, M Tittgemeyer, KE Stephan
Frontiers in human neuroscience 8, 428, 2014
402014
Subjective estimates of uncertainty during gambling and impulsivity after subthalamic deep brain stimulation for Parkinson’s disease
S Paliwal, PE Mosley, M Breakspear, T Coyne, P Silburn, E Aponte, ...
Scientific reports 9 (1), 14795, 2019
232019
Directed graph embeddings in pseudo-riemannian manifolds
A Sim, ML Wiatrak, A Brayne, P Creed, S Paliwal
International Conference on Machine Learning, 9681-9690, 2021
172021
Inversion of hierarchical Bayesian models using Gaussian processes
EI Lomakina, S Paliwal, AO Diaconescu, KH Brodersen, EA Aponte, ...
Neuroimage 118, 133-145, 2015
142015
Allostatic self-efficacy: A metacognitive theory of dyshomeostasis-induced fatigue and depression. Front Hum Neurosci. 2016; 10: 550
KE Stephan, ZM Manjaly, CD Mathys, LA Weber, S Paliwal, T Gard
72016
Horrible here”: How systemic failures of transparency have hidden the impacts of COVID-19 on incarcerated women
A Lacoste, S Paliwal, E Tyagi, H Johnson
Repéré sur le site du UCLA Covid Behind Bars Data Project: https …, 2021
52021
Subjective estimates of uncertainty and volatility during gambling predict impulsivity after subthalamic deep brain stimulation for Parkinson’s disease
S Paliwal, P Mosley, M Breakspear, T Coyne, P Silburn, E Aponte, ...
BioRxiv, 2018
22018
BioNeMo Framework: a modular, high-performance library for AI model development in drug discovery
PS John, D Lin, P Binder, M Greaves, V Shah, JS John, A Lange, P Hsu, ...
arXiv preprint arXiv:2411.10548, 2024
12024
UKAN: Unbound Kolmogorov-Arnold Network Accompanied with Accelerated Library
A Moradzadeh, L Wawrzyniak, M Macklin, SG Paliwal
arXiv preprint arXiv:2408.11200, 2024
12024
Graph embedding systems and apparatus
SIM Aaron, ML Wiatrak, ARG Brayne, P Creed, S Paliwal
US Patent App. 18/365,325, 2023
12023
Bayesian inversion of dynamic causal models using Gaussian processes
EI Lomakina, S Paliwal, KH Brodersen, JM Buhmann, KE Stephan
Human Brain Mapping, 2013
12013
Molecule Generation with Fragment Retrieval Augmentation
S Lee, K Kreis, S Veccham, M Liu, D Reidenbach, S Paliwal, A Vahdat, ...
Advances in Neural Information Processing Systems 37, 132463-132490, 2025
2025
GenMol: A Drug Discovery Generalist with Discrete Diffusion
S Lee, K Kreis, SP Veccham, M Liu, D Reidenbach, Y Peng, S Paliwal, ...
arXiv preprint arXiv:2501.06158, 2025
2025
DualBind: A Dual-Loss Framework for Protein-Ligand Binding Affinity Prediction
M Liu, SG Paliwal
arXiv preprint arXiv:2406.07770, 2024
2024
LinkLogic: A New Method and Benchmark for Explainable Knowledge Graph Predictions
N Kumar-Singh, G Polleti, S Paliwal, R Hodos-Nkhereanye
arXiv preprint arXiv:2406.00855, 2024
2024
Pseudo-Riemannian Embedding Models for Multi-Relational Graph Representations
S Paliwal, A Brayne, B Fabian, M Wiatrak, A Sim
arXiv preprint arXiv:2212.03720, 2022
2022
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20