Seguir
Dun Zeng
Título
Citado por
Citado por
Año
FedLab: A Flexible Federated Learning Framework
D Zeng, S Liang, X Hu, H Wang, Z Xu
Journal of Machine Learning Research (JMLR) 24 (100), 1-7, 2023
1152023
A Survey of Trustworthy Federated Learning with Perspectives on Security, Robustness and Privacy
Y Zhang, D Zeng, J Luo, Z Xu, I King
Companion Proceedings of the ACM Web Conference 2023, 1167-1176, 2023
60*2023
Stochastic Clustered Federated Learning
D Zeng, X Hu, S Liu, Y Yu, Q Wang, Z Xu
KDD FL4Data-Mining Workshop, 2023., 2023
172023
On Diversified Preferences of Large Language Model Alignment
D Zeng, Y Dai, P Cheng, L Wang, T Hu, W Chen, N Du, Z Xu
Findings of the Association for Computational Linguistics: EMNLP 2024, 9194-9210, 2024
12*2024
Federated knowledge graph completion via latent embedding sharing and tensor factorization
M Wang, D Zeng, Z Xu, R Guo, X Zhao
2023 IEEE International Conference on Data Mining (ICDM), 1361-1366, 2023
72023
On the Power of Adaptive Weighted Aggregation in Heterogeneous Federated Learning and Beyond
D Zeng, Z Xu, Y Pan, Q Wang, X Tang
AISTATS 2025, 2023
7*2023
FedNoisy: Federated Noisy Label Learning Benchmark
S Liang, J Huang, J Hong, D Zeng, J Zhou, Z Xu
arXiv preprint arXiv:2306.11650, 2023
72023
Advocating for the Silent: Enhancing Federated Generalization for Nonparticipating Clients
Z Wu, Z Xu, D Zeng, Q Wang, J Liu
IEEE Transactions on Neural Networks and Learning Systems, 2024
4*2024
Topology learning for heterogeneous decentralized federated learning over unreliable d2d networks
Z Wu, Z Xu, D Zeng, J Li, J Liu
IEEE Transactions on Vehicular Technology, 2024
42024
Flexible contribution estimation methods for horizontal federated learning
X Hu, C Luo, D Zeng, Z Xu, P Guo, I King
2023 International Joint Conference on Neural Networks (IJCNN), 1-8, 2023
42023
Encoded Gradients Aggregation against Gradient Leakage in Federated Learning
D Zeng, S Liu, S Liang, Z Li, H Wang, I King, Z Xu
arXiv preprint arXiv:2205.13216, 2022
3*2022
Understanding Generalization of Federated Learning: the Trade-off between Model Stability and Optimization
D Zeng, Z Wu, S Liu, Y Pan, X Tang, Z Xu
arXiv preprint arXiv:2411.16303, 2024
12024
Enhanced Federated Optimization: Adaptive Unbiased Client Sampling with Reduced Variance
D Zeng, Z Xu, Y Pan, X Luo, Q Wang, X Tang
Transactions on Machine Learning Research (TMLR), 2023
12023
FedCVD: The First Real-World Federated Learning Benchmark on Cardiovascular Disease Data
Y Zhang, G Chen, Z Xu, J Wang, D Zeng, J Li, J Wang, Y Qi, I King
arXiv preprint arXiv:2411.07050, 2024
2024
FedAWARE: Maximizing Gradient Diversity for Heterogeneous Federated Server-side Optimization
D Zeng, Z Xu, Y Pan, Q Wang, X Tang
arXiv preprint arXiv:2310.02702, 2023
2023
Personalized Federated Learning via Amortized Bayesian Meta-Learning
S Liu, S Lv, D Zeng, Z Xu, H Wang, Y Yu
arXiv preprint arXiv:2307.02222, 2023
2023
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–16