Fourier phase retrieval: Uniqueness and algorithms T Bendory, R Beinert, YC Eldar Compressed Sensing and its Applications: Second International MATHEON …, 2017 | 118 | 2017 |
Ambiguities in one-dimensional discrete phase retrieval from Fourier magnitudes R Beinert, G Plonka Journal of Fourier Analysis and Applications 21, 1169-1198, 2015 | 97 | 2015 |
Enforcing uniqueness in one-dimensional phase retrieval by additional signal information in time domain R Beinert, G Plonka Applied and Computational Harmonic Analysis 45 (3), 505-525, 2018 | 37 | 2018 |
Sparse phase retrieval of one-dimensional signals by Prony's method R Beinert, G Plonka Frontiers in Applied Mathematics and Statistics 3, 5, 2017 | 30 | 2017 |
Posterior sampling based on gradient flows of the MMD with negative distance kernel P Hagemann, J Hertrich, F Altekrüger, R Beinert, J Chemseddine, G Steidl arXiv preprint arXiv:2310.03054, 2023 | 24 | 2023 |
On a linear Gromov–Wasserstein distance F Beier, R Beinert, G Steidl IEEE Transactions on Image Processing 31, 7292-7305, 2022 | 22 | 2022 |
Wasserstein steepest descent flows of discrepancies with Riesz kernels J Hertrich, M Gräf, R Beinert, G Steidl Journal of Mathematical Analysis and Applications 531 (1), 127829, 2024 | 20 | 2024 |
Non-negativity constraints in the one-dimensional discrete-time phase retrieval problem R Beinert Information and Inference: A Journal of the IMA 6 (2), 213-224, 2017 | 20 | 2017 |
On assignment problems related to Gromov–Wasserstein distances on the real line R Beinert, C Heiss, G Steidl SIAM Journal on Imaging Sciences 16 (2), 1028-1032, 2023 | 19 | 2023 |
One-dimensional phase retrieval with additional interference intensity measurements R Beinert Results in Mathematics 72 (1), 1-24, 2017 | 19 | 2017 |
Sliced optimal transport on the sphere M Quellmalz, R Beinert, G Steidl Inverse Problems 39 (10), 105005, 2023 | 18 | 2023 |
Total variation-based reconstruction and phase retrieval for diffraction tomography R Beinert, M Quellmalz SIAM Journal on Imaging Sciences 15 (3), 1373-1399, 2022 | 13 | 2022 |
Wasserstein gradient flows of the discrepancy with distance kernel on the line J Hertrich, R Beinert, M Gräf, G Steidl International Conference on Scale Space and Variational Methods in Computer …, 2023 | 10 | 2023 |
One-dimensional discrete-time phase retrieval R Beinert, G Plonka Nanoscale Photonic Imaging, 603-627, 2020 | 8 | 2020 |
Sparse phase retrieval of structured signals by Prony's method R Beinert, G Plonka PAMM 17 (1), 829-830, 2017 | 8 | 2017 |
Multi-marginal Gromov-Wasserstein transport and barycenters F Beier, R Beinert, G Steidl arXiv preprint arXiv:2205.06725, 2022 | 7 | 2022 |
Tensor-free proximal methods for lifted bilinear/quadratic inverse problems with applications to phase retrieval R Beinert, K Bredies Foundations of Computational Mathematics 21 (5), 1181-1232, 2021 | 7 | 2021 |
Ambiguities in one‐dimensional phase retrieval from magnitudes of a linear canonical transform R Beinert ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte …, 2017 | 7 | 2017 |
Phase retrieval and system identification in dynamical sampling via Prony’s method R Beinert, M Hasannasab Advances in Computational Mathematics 49 (4), 56, 2023 | 6 | 2023 |
Ambiguities in one‐dimensional phase retrieval of structured functions R Beinert, G Plonka PAMM 15 (1), 653-654, 2015 | 6 | 2015 |