Seguir
JE Holt
JE Holt
Laboratory for Physical Sciences
Dirección de correo verificada de holt.net
Título
Citado por
Citado por
Año
Relext: Relation extraction using deep learning approaches for cybersecurity knowledge graph improvement
A Pingle, A Piplai, S Mittal, A Joshi, J Holt, R Zak
Proceedings of the 2019 IEEE/ACM International Conference on Advances in …, 2019
1522019
Creating cybersecurity knowledge graphs from malware after action reports
A Piplai, S Mittal, A Joshi, T Finin, J Holt, R Zak
IEEE Access 8, 211691-211703, 2020
1182020
Grand challenge: Applying artificial intelligence and machine learning to cybersecurity
K Bresniker, A Gavrilovska, J Holt, D Milojicic, T Tran
Computer 52 (12), 45-52, 2019
682019
Automatic yara rule generation using biclustering
E Raff, R Zak, G Lopez Munoz, W Fleming, HS Anderson, B Filar, ...
Proceedings of the 13th ACM Workshop on Artificial Intelligence and Security …, 2020
472020
Out of distribution data detection using dropout bayesian neural networks
AT Nguyen, F Lu, GL Munoz, E Raff, C Nicholas, J Holt
Proceedings of the AAAI Conference on Artificial Intelligence 36 (7), 7877-7885, 2022
302022
Learning with holographic reduced representations
A Ganesan, H Gao, S Gandhi, E Raff, T Oates, J Holt, M McLean
Advances in neural information processing systems 34, 25606-25620, 2021
292021
Leveraging uncertainty for improved static malware detection under extreme false positive constraints
AT Nguyen, E Raff, C Nicholas, J Holt
arXiv preprint arXiv:2108.04081, 2021
242021
Recasting self-attention with holographic reduced representations
MM Alam, E Raff, S Biderman, T Oates, J Holt
International Conference on Machine Learning, 490-507, 2023
122023
Getting passive aggressive about false positives: patching deployed malware detectors
E Raff, B Filar, J Holt
2020 International Conference on Data Mining Workshops (ICDMW), 506-515, 2020
92020
Efficient malware analysis using metric embeddings
EM Rudd, D Krisiloff, S Coull, D Olszewski, E Raff, J Holt
Digital Threats: Research and Practice 5 (1), 1-20, 2024
82024
Deploying convolutional networks on untrusted platforms using 2D holographic reduced representations
MM Alam, E Raff, T Oates, J Holt
arXiv preprint arXiv:2206.05893, 2022
72022
Reproducibility in multiple instance learning: a case for algorithmic unit tests
E Raff, J Holt
Advances in Neural Information Processing Systems 36, 13530-13544, 2023
62023
A coreset learning reality check
F Lu, E Raff, J Holt
Proceedings of the AAAI Conference on Artificial Intelligence 37 (7), 8940-8948, 2023
62023
Holographic global convolutional networks for long-range prediction tasks in malware detection
MM Alam, E Raff, SR Biderman, T Oates, J Holt
International Conference on Artificial Intelligence and Statistics, 4042-4050, 2024
52024
Small Effect Sizes in Malware Detection? Make Harder Train/Test Splits!
T Patel, F Lu, E Raff, C Nicholas, C Matuszek, J Holt
arXiv preprint arXiv:2312.15813, 2023
52023
Lempel-ziv networks
R Saul, MM Alam, J Hurwitz, E Raff, T Oates, J Holt
Proceedings on, 1-11, 2023
52023
Maldict: Benchmark datasets on malware behaviors, platforms, exploitation, and packers
RJ Joyce, E Raff, C Nicholas, J Holt
arXiv preprint arXiv:2310.11706, 2023
42023
Marvolo: Programmatic data augmentation for practical ml-driven malware detection
MD Wong, E Raff, J Holt, R Netravali
arXiv preprint arXiv:2206.03265, 2022
42022
Is Function Similarity Over-Engineered? Building a Benchmark
R Saul, C Liu, N Fleischmann, R Zak, K Micinski, E Raff, J Holt
arXiv preprint arXiv:2410.22677, 2024
32024
Assemblage: Automatic Binary Dataset Construction for Machine Learning
C Liu, R Saul, Y Sun, E Raff, M Fuchs, TS Pantano, J Holt, K Micinski
arXiv preprint arXiv:2405.03991, 2024
32024
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20