Seguir
Grant Wilkins
Grant Wilkins
PhD Student, Stanford University
Dirección de correo verificada de stanford.edu
Título
Citado por
Citado por
Año
A Survey on Error-Bounded Lossy Compression for Scientific Datasets
S Di, J Liu, K Zhao, X Liang, R Underwood, Z Zhang, M Shah, Y Huang, ...
arXiv preprint arXiv:2404.02840, 2024
102024
Hybrid Heterogeneous Clusters Can Lower the Energy Consumption of LLM Inference Workloads
G Wilkins, S Keshav, R Mortier
Proceedings of the 15th ACM International Conference on Future and …, 2024
92024
Offline energy-optimal llm serving: Workload-based energy models for llm inference on heterogeneous systems
G Wilkins, S Keshav, R Mortier
arXiv preprint arXiv:2407.04014, 2024
82024
FedSZ: Leveraging error-bounded lossy compression for federated learning communications
G Wilkins, S Di, JC Calhoun, Z Li, K Kim, R Underwood, R Mortier, ...
2024 IEEE 44th International Conference on Distributed Computing Systems …, 2024
7*2024
Modeling power consumption of lossy compressed i/o for exascale hpc systems
G Wilkins, JC Calhoun
2022 IEEE International Parallel and Distributed Processing Symposium …, 2022
32022
Online Workload Allocation and Energy Optimization in Large Language Model Inference Systems
G Wilkins
12024
Analyzing the energy consumption of synchronous and asynchronous checkpointing strategies
G Wilkins, MJ Gossman, B Nicolae, MC Smith, JC Calhoun
2022 IEEE/ACM Third International Symposium on Checkpointing for …, 2022
12022
To Compress or Not To Compress: Energy Trade-Offs and Benefits of Lossy Compressed I/O
G Wilkins, S Di, JC Calhoun, R Underwood, F Cappello
arXiv preprint arXiv:2410.23497, 2024
2024
Modeling Power Usage for the SZ Lossy Compressor on HPC Systems
G WILKINS, J CALHOUN
2020
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–9