CADS: Unleashing the Diversity of Diffusion Models through Condition-Annealed Sampling S Sadat, J Buhmann, D Bradley, O Hilliges, RM Weber arXiv preprint arXiv:2310.17347, 2023 | 24 | 2023 |
LiteVAE: Lightweight and Efficient Variational Autoencoders for Latent Diffusion Models S Sadat, J Buhmann, D Bradley, O Hilliges, RM Weber arXiv preprint arXiv:2405.14477, 2024 | 6 | 2024 |
Eliminating oversaturation and artifacts of high guidance scales in diffusion models S Sadat, O Hilliges, RM Weber arXiv preprint arXiv:2410.02416, 2024 | 2 | 2024 |
No training, no problem: Rethinking classifier-free guidance for diffusion models S Sadat, M Kansy, O Hilliges, RM Weber arXiv preprint arXiv:2407.02687, 2024 | 2 | 2024 |
Regressor-Guided Image Editing Regulates Emotional Response to Reduce Online Engagement C Gebhardt, R Willardt, S Sadat, CW Ning, A Brombach, J Song, ... arXiv preprint arXiv:2501.12289, 2025 | | 2025 |
Factorized Motion Diffusion for Precise and Character-Agnostic Motion Inbetweening J Studer, D Agrawal, D Borer, S Sadat, RW Sumner, M Guay, J Buhmann Proceedings of the 17th ACM SIGGRAPH Conference on Motion, Interaction, and …, 2024 | | 2024 |