Seguir
Eric Lindgren
Título
Citado por
Citado por
Año
GPUMD: A package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations
Z Fan, Y Wang, P Ying, K Song, J Wang, Y Wang, Z Zeng, K Xu, ...
The Journal of Chemical Physics 157 (11), 2022
1792022
General-purpose machine-learned potential for 16 elemental metals and their alloys
K Song, R Zhao, J Liu, Y Wang, E Lindgren, Y Wang, S Chen, K Xu, ...
Nature Communications 15 (1), 10208, 2024
272024
Machine learning for polaritonic chemistry: Accessing chemical kinetics
C Schafer, J Fojt, E Lindgren, P Erhart
Journal of the American Chemical Society 146 (8), 5402-5413, 2024
162024
Tensorial properties via the neuroevolution potential framework: Fast simulation of infrared and Raman spectra
N Xu, P Rosander, C Schäfer, E Lindgren, N Österbacka, M Fang, ...
Journal of Chemical Theory and Computation 20 (8), 3273-3284, 2024
132024
calorine: A Python package for constructing and sampling neuroevolution potential models
E Lindgren, M Rahm, E Fransson, F Eriksson, N Österbacka, Z Fan, ...
Journal of Open Source Software 9 (95), 6264, 2024
92024
Shedding Light on Liquid Chromophores Using Machine Learning
E Lindgren
Department of Physics, Chalmers University of Technology, 2024
2024
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–6