Seguir
Manli Shu
Título
Citado por
Citado por
Año
Test-Time Prompt Tuning for Zero-Shot Generalization in Vision-Language Models
M Shu, W Nie, DA Huang, Z Yu, T Goldstein, A Anandkumar, C Xiao
Conference on Neural Information Processing Systems (NeurIPS), 2022
3002022
On the reliability of watermarks for large language models
J Kirchenbauer, J Geiping, Y Wen, M Shu, K Saifullah, K Kong, ...
arXiv preprint arXiv:2306.04634, 2023
1612023
On the exploitability of instruction tuning
M Shu, J Wang, C Zhu, J Geiping, C Xiao, T Goldstein
Advances in Neural Information Processing Systems 36, 61836-61856, 2023
902023
What do vision transformers learn? a visual exploration
A Ghiasi, H Kazemi, E Borgnia, S Reich, M Shu, M Goldblum, AG Wilson, ...
arXiv preprint arXiv:2212.06727, 2022
74*2022
Battle of the backbones: A large-scale comparison of pretrained models across computer vision tasks
M Goldblum, H Souri, R Ni, M Shu, V Prabhu, G Somepalli, ...
Advances in Neural Information Processing Systems 36, 2024
632024
Coercing LLMs to do and reveal (almost) anything
J Geiping, A Stein, M Shu, K Saifullah, Y Wen, T Goldstein
arXiv preprint arXiv:2402.14020, 2024
472024
Gradient-Free Adversarial Training against Image Corruption for Learning-based Steering
Y Shen, L Zheng, M Shu, W Li, T Goldstein, M Lin
Conference on Neural Information Processing Systems (NeurIPS), 2021
44*2021
xgen-mm (blip-3): A family of open large multimodal models
L Xue*, M Shu*, A Awadalla, J Wang, A Yan, S Purushwalkam, H Zhou, ...
arXiv preprint arXiv:2408.08872, 2024
422024
Encoding Robustness to Image Style via Adversarial Feature Perturbation
M Shu, Z Wu, M Goldblum, T Goldstein
Conference on Neural Information Processing Systems (NeurIPS), 2021
35*2021
Bring Your Own Data! Self-Sensitivity Evaluation for Large Language Models
N Jain, K Saifullah, Y Wen, J Kirchenbauer, M Shu, A Saha, M Goldblum, ...
First Conference on Language Modeling, 0
26*
The Close Relationship Between Contrastive Learning and Meta-Learning
R Ni*, M Shu*, H Souri, M Goldblum, T Goldstein
International Conference on Learning Representations (ICLR), 2021
222021
MINT-1T: Scaling Open-Source Multimodal Data by 10x: A Multimodal Dataset with One Trillion Tokens
A Awadalla, L Xue, O Lo, M Shu, H Lee, EK Guha, M Jordan, S Shen, ...
arXiv preprint arXiv:2406.11271, 2024
212024
Adversarial Differentiable Data Augmentation for Autonomous Systems
M Shu, Y Shen, MC Lin, T Goldstein
International Conference on Robotics and Automation (ICRA), 2021
192021
Shadowcast: Stealthy data poisoning attacks against vision-language models
Y Xu, J Yao, M Shu, Y Sun, Z Wu, N Yu, T Goldstein, F Huang
arXiv preprint arXiv:2402.06659, 2024
172024
Where do Models go Wrong? Parameter-Space Saliency Maps for Explainability
R Levin, M Shu, E Borgnia, F Huang, M Goldblum, T Goldstein
Conference on Neural Information Processing Systems (NeurIPS), 2022, 2021
122021
Headless horseman: Adversarial attacks on transfer learning models
A Abdelkader, MJ Curry, L Fowl, T Goldstein, A Schwarzschild, M Shu, ...
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and …, 2020
72020
xgen-mm-vid (blip-3-video): You only need 32 tokens to represent a video even in vlms
MS Ryoo, H Zhou, S Kendre, C Qin, L Xue, M Shu, S Savarese, R Xu, ...
arXiv preprint arXiv:2410.16267, 2024
52024
ProVision: Programmatically Scaling Vision-centric Instruction Data for Multimodal Language Models
J Zhang, L Xue, L Song, J Wang, W Huang, M Shu, A Yan, Z Ma, ...
arXiv preprint arXiv:2412.07012, 2024
3*2024
Towards accurate quantization and pruning via data-free knowledge transfer
C Zhu, Z Xu, A Shafahi, M Shu, A Ghiasi, T Goldstein
arXiv preprint arXiv:2010.07334, 2020
32020
xGen-VideoSyn-1: High-fidelity Text-to-Video Synthesis with Compressed Representations
C Qin, C Xia, K Ramakrishnan, M Ryoo, L Tu, Y Feng, M Shu, H Zhou, ...
arXiv preprint arXiv:2408.12590, 2024
22024
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20