Seguir
Pratheeba Jeyananthan
Pratheeba Jeyananthan
Department of Computer Engineering, Faculty of Engineering, University of Jaffna
Dirección de correo verificada de eng.jfn.ac.lk
Título
Citado por
Citado por
Año
Prediction of masonry prism strength using machine learning technique: Effect of dimension and strength parameters
N Sathiparan, P Jeyananthan
Materials Today Communications 35, 106282, 2023
342023
Surface response regression and machine learning techniques to predict the characteristics of pervious concrete using non-destructive measurement: Ultrasonic pulse velocity and …
N Sathiparan, P Jeyananthan, DN Subramaniam
Measurement 225, 114006, 2024
222024
Predicting compressive strength of cement-stabilized earth blocks using machine learning models incorporating cement content, ultrasonic pulse velocity, and electrical resistivity
N Sathiparan, P Jeyananthan
Nondestructive Testing and Evaluation 39 (5), 1045-1069, 2024
202024
Effect of aggregate size, aggregate to cement ratio and compaction energy on ultrasonic pulse velocity of pervious concrete: prediction by an analytical model and machine …
N Sathiparan, P Jeyananthan, DN Subramaniam
Asian Journal of Civil Engineering 25 (1), 495-509, 2024
202024
Soft computing techniques to predict the electrical resistivity of pervious concrete
DN Subramaniam, P Jeyananthan, N Sathiparan
Asian Journal of Civil Engineering 25 (1), 711-722, 2024
172024
Prediction of compressive strength of fly ash blended pervious concrete: a machine learning approach
N Sathiparan, P Jeyananthan, DN Subramaniam
International Journal of Pavement Engineering 24 (2), 2287146, 2023
172023
Silica fume as a supplementary cementitious material in pervious concrete: prediction of compressive strength through a machine learning approach
N Sathiparan, P Jeyananthan, DN Subramaniam
Asian Journal of Civil Engineering 25 (3), 2963-2977, 2024
122024
Predicting compressive strength of quarry waste-based geopolymer mortar using machine learning algorithms incorporating mix design and ultrasonic pulse velocity
N Sathiparan, P Jeyananthan
Nondestructive Testing and Evaluation, 1-24, 2024
102024
SARS-CoV-2 diagnosis using transcriptome data: a machine learning approach
P Jeyananthan
SN Computer Science 4 (3), 218, 2023
82023
Protein data in the identification and stage prediction of bronchopulmonary dysplasia on preterm infants: a machine learning study
P Jeyananthan, K Bandara, YGA Nayanajith
International Journal of Information Technology 16 (1), 387-392, 2024
72024
Characterization of the shape of aggregates using image analysis and machine learning classification tools
DN Subramaniam, M Sajeevan, J Pratheeba, SHB Wijekoon, ...
Geomechanics and Geoengineering 19 (4), 421-443, 2024
72024
Role of different types of RNA molecules in the severity prediction of SARS-CoV-2 patients
P Jeyananthan
Pathology-Research and Practice 242, 154311, 2023
72023
Investigation of compaction on compressive strength and porosity of pervious concrete
M Sajeevan, DN Subramaniam, R Rinduja, J Pratheeba
International Journal of Pavement Research and Technology, 1-16, 2023
72023
Soft computing to predict the porosity and permeability of pervious concrete based on mix design and ultrasonic pulse velocity
N Sathiparan, SH Wijekoon, P Jeyananthan, DN Subramaniam
International Journal of Pavement Engineering 25 (1), 2337916, 2024
62024
Soft computing techniques to predict the compressive strength of groundnut shell ash-blended concrete
N Sathiparan, P Jeyananthan
Journal of Engineering and Applied Science 70 (1), 134, 2023
62023
Prolonged viral shedding prediction on non-hospitalized, uncomplicated SARS-CoV-2 patients using their transcriptome data
P Jeyananthan
Computer Methods and Programs in Biomedicine Update 2, 100070, 2022
62022
Influence of metakaolin on pervious concrete strength: a machine learning approach with shapley additive explanations
N Sathiparan, P Jeyananthan, DN Subramaniam
Multiscale and Multidisciplinary Modeling, Experiments and Design, 1-28, 2024
52024
Machine learning in the identification of phenotypes of multiple sclerosis patients
P Jeyananthan
International Journal of Information Technology 16 (4), 2307-2313, 2024
42024
Predicting compressive strength of pervious concrete with fly ash: a machine learning approach and analysis of fly ash compositional influence
N Sathiparan, P Jeyananthan, DN Subramaniam
Multiscale and Multidisciplinary Modeling, Experiments and Design, 1-21, 2024
42024
Comprehensive Machine Learning Analysis on the Phenotypes of COVID-19 Patients Using Transcriptome Data
P Jeyananthan
Arab Gulf Journal of Scientific Research 39 (No. 2 (special)), 79-137, 2022
32022
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20