Seguir
Mingyu Lee
Título
Citado por
Citado por
Año
Efficient Pre-training of Masked Language Model via Concept-based Curriculum Masking
M Lee, JH Park, J Kim, KM Kim, SK Lee
Proceedings of the 2022 Conference on Empirical Methods in Natural Language …, 2022
132022
Learning from missing relations: Contrastive learning with commonsense knowledge graphs for commonsense inference
YH Jung, JH Park, JY Choi, M Lee, J Kim, KM Kim, SK Lee
Findings of the Association for Computational Linguistics: ACL 2022, 1514-1523, 2022
62022
Tutoring helps students learn better: Improving knowledge distillation for bert with tutor network
J Kim, JH Park, M Lee, WL Mok, JY Choi, SK Lee
Proceedings of the 2022 Conference on Empirical Methods in Natural Language …, 2022
52022
Improving Bias Mitigation through Bias Experts in Natural Language Understanding
E Jeon, M Lee, J Park, Y Kim, WL Mok, SK Lee
Proceedings of the 2023 Conference on Empirical Methods in Natural Language …, 2023
42023
Multi-stage prompt tuning for political perspective detection in low-resource settings
KM Kim, M Lee, HS Won, MJ Kim, Y Kim, SK Lee
Applied Sciences 13 (10), 6252, 2023
32023
Coconut: Contextualized commonsense unified transformers for graph-based commonsense augmentation of language models
JH Park, M Lee, J Kim, SK Lee
Findings of the Association for Computational Linguistics ACL 2024, 5815-5830, 2024
12024
MolTRES: Improving Chemical Language Representation Learning for Molecular Property Prediction
JH Park, Y Kim, M Lee, H Park, SK Lee
arXiv preprint arXiv:2408.01426, 2024
12024
Continual debiasing: A bias mitigation framework for natural language understanding systems
M Lee, J Kim, JH Park, SK Lee
Expert Systems with Applications, 126593, 2025
2025
Leap-of-Thought: Accelerating Transformers via Dynamic Token Routing
Y Kim, J Kim, JH Park, M Lee, SK Lee
Proceedings of the 2023 Conference on Empirical Methods in Natural Language …, 2023
2023
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–9