Where have you been: Dual spatiotemporal-aware user mobility modeling for missing check-in POI identification J Wu, R Hu, D Li, L Ren, W Hu, Y Xiao Information Processing & Management 59 (5), 103030, 2022 | 16 | 2022 |
Dynamic graph neural network-based fraud detectors against collaborative fraudsters L Ren, R Hu, D Li, Y Liu, J Wu, Y Zang, W Hu Knowledge-Based Systems 278, 110888, 2023 | 11 | 2023 |
Beyond the individual: An improved telecom fraud detection approach based on latent synergy graph learning J Wu, R Hu, D Li, L Ren, Z Huang, Y Zang Neural Networks 169, 20-31, 2024 | 6 | 2024 |
Improving fraud detection via imbalanced graph structure learning L Ren, R Hu, Y Liu, D Li, J Wu, Y Zang, W Hu Machine Learning 113 (3), 1069-1090, 2024 | 4 | 2024 |
Collaborative Fraud Detection: How Collaboration Impacts Fraud Detection J Hu, R Hu, Z Wang, D Li, J Wu, L Ren, Y Zang, Z Huang, M Wang Proceedings of the 31st ACM International Conference on Multimedia, 8891-8899, 2023 | 4 | 2023 |
Don't Ignore Alienation and Marginalization: Correlating Fraud Detection. Y Zang, R Hu, Z Wang, D Xu, J Wu, D Li, J Wu, L Ren IJCAI, 4959-4966, 2023 | 4 | 2023 |
Multi-level graph attention network based unsupervised network alignment Y Xiao, R Hu, D Li, J Wu, Y Zhen, L Ren 2021 IEEE 46th Conference on Local Computer Networks (LCN), 217-224, 2021 | 4 | 2021 |
Idgl: an imbalanced disassortative graph learning framework for fraud detection J Wu, R Hu, D Li, L Ren, W Hu, Y Zang International Conference on Service-Oriented Computing, 616-631, 2022 | 3 | 2022 |
Non-orthogonal joint diagonalization algorithm preventable ill conditioned solutions for blind source separation T Zeng, L Gou, J Wu Optik 140, 145-150, 2017 | 3 | 2017 |
A GNN-based fraud detector with dual resistance to graph disassortativity and imbalance J Wu, R Hu, D Li, L Ren, W Hu, Y Zang Information Sciences 669, 120580, 2024 | 2 | 2024 |
Where Have You Gone: Category-aware Multigraph Embedding for Missing Point-of-Interest Identification J Wu, R Hu, D Li, Y Xiao, L Ren, W Hu Neural Processing Letters 55 (3), 3025-3044, 2023 | 2 | 2023 |
Urban hierarchical open-up schemes based on fine regional epidemic data for the lockdown in COVID-19 R Hu, X Wang, J Ma, H Pan, D Xu, J Wu Big Data Research 25, 100243, 2021 | 2 | 2021 |
Who is your friend: inferring cross-regional friendship from mobility profiles L Ren, R Hu, D Li, Z Wang, J Wu, X Li, W Hu Multimedia Tools and Applications 82 (8), 12719-12737, 2023 | 1 | 2023 |
Learning Dynamic Behavior Patterns for Fraud Detection Z Huang, J Wu, L Ren, R Hu, D Li 2022 IEEE Intl Conf on Parallel & Distributed Processing with Applications …, 2022 | 1 | 2022 |
Cross-regional friendship inference via category-aware multi-bipartite graph embedding L Ren, R Hu, D Li, J Wu, Y Zang, W Hu 2022 IEEE 47th Conference on Local Computer Networks (LCN), 73-80, 2022 | 1 | 2022 |
Power on graph: Mining power relationship via user interaction correlation Y Zang, L Ren, J Wu, Y Xiao, R Hu Expert Systems with Applications, 126348, 2025 | | 2025 |
Rethinking Cancer Gene Identification through Graph Anomaly Analysis Y Zang, L Ren, Y Li, Z Wang, DA Selby, Z Wang, SJ Vollmer, H Yin, ... arXiv preprint arXiv:2412.17240, 2024 | | 2024 |
Do not ignore heterogeneity and heterophily: Multi-network collaborative telecom fraud detection L Ren, Y Zang, R Hu, D Li, J Wu, Z Huan, J Hu Expert Systems with Applications 257, 124974, 2024 | | 2024 |
Heterophilic Graph Invariant Learning for Out-of-Distribution of Fraud Detection L Ren, R Hu, Z Wang, Y Xiao, D Li, J Wu, Y Zang, J Hu, Z Huang Proceedings of the 32nd ACM International Conference on Multimedia, 11032-11040, 2024 | | 2024 |
Robust heterophilic graph learning against label noise for anomaly detection J Wu, R Hu, D Li, Z Huang, L Ren, Y Zang Structure 4 (v5), v6, 2024 | | 2024 |