Seguir
Ruikun Zhou
Ruikun Zhou
PhD candidate, University of Waterloo
Dirección de correo verificada de uwaterloo.ca
Título
Citado por
Citado por
Año
Neural Lyapunov Control of Unknown Nonlinear Systems with Stability Guarantees
R Zhou, T Quartz, H De Sterck, J Liu
Advances in Neural Information Processing Systems 35 (NeurIPS 2022), 2022
562022
Physics-informed neural network Lyapunov functions: PDE characterization, learning, and verification
J Liu, Y Meng, M Fitzsimmons, R Zhou
Automatica 175, 112193, 2025
242025
Tool LyZNet: A lightweight Python tool for learning and verifying neural Lyapunov functions and regions of attraction
J Liu, Y Meng, M Fitzsimmons, R Zhou
Proceedings of the 27th ACM International Conference on Hybrid Systems …, 2024
132024
Physics-Informed Neural Network Policy Iteration: Algorithms, Convergence, and Verification
Y Meng*, R Zhou*, A Mukherjee, M Fitzsimmons, C Song, J Liu
The Forty-first International Conference on Machine Learning (ICML 2024), 2024
112024
Learning regions of attraction in unknown dynamical systems via zubov-koopman lifting: Regularities and convergence
Y Meng, R Zhou, J Liu
arXiv preprint arXiv:2311.15119, 2023
112023
Towards Learning and Verifying Maximal Neural Lyapunov Functions
J Liu, Y Meng, M Fitzsimmons, R Zhou
2023 IEEE 62nd Conference on Decision and Control (CDC), 2023
102023
Compositionally verifiable vector neural Lyapunov functions for stability analysis of interconnected nonlinear systems
J Liu, Y Meng, M Fitzsimmons, R Zhou
2024 American Control Conference (ACC), 4789-4794, 2024
62024
Koopman-based learning of infinitesimal generators without operator logarithm
Y Meng, R Zhou, M Ornik, J Liu
arXiv preprint arXiv:2403.15688, 2024
62024
Physics-informed extreme learning machine Lyapunov functions
R Zhou, M Fitzsimmons, Y Meng, J Liu
IEEE Control Systems Letters, 2024
52024
A Model-Free Kullback-Leibler Divergence Filter for Anomaly Detection in Noisy Data Series
R Zhou, W Gueaieb, D Spinello
Journal of Dynamic Systems, Measurement, and Control, 1-10, 2022
32022
Formally Verified Physics-Informed Neural Control Lyapunov Functions
J Liu, M Fitzsimmons, R Zhou, Y Meng
arXiv preprint arXiv:2409.20528, 2024
22024
Stochastic reinforcement learning with stability guarantees for control of unknown nonlinear systems
T Quartz, R Zhou, H De Sterck, J Liu
arXiv preprint arXiv:2409.08382, 2024
22024
Stability of Jordan Recurrent Neural Network Estimator
A Kaur, R Zhou, J Liu, K Morris
arXiv preprint arXiv:2502.04551, 2025
12025
Resolvent-Type Data-Driven Learning of Generators for Unknown Continuous-Time Dynamical Systems
Y Meng*, R Zhou*, M Ornik, J Liu
arXiv preprint arXiv:2411.00923, 2024
12024
Zubov-Koopman Learning of Maximal Lyapunov Functions
Y Meng, R Zhou, J Liu
2024 American Control Conference (ACC), 4020-4025, 2024
12024
Physics-informed neural networks for stability analysis and control with formal guarantees
J Liu, Y Meng, M Fitzsimmons, R Zhou
Proceedings of the 27th ACM International Conference on Hybrid Systems …, 2024
12024
LyZNet with Control: Physics-Informed Neural Network Control of Nonlinear Systems with Formal Guarantees
J Liu, Y Meng, R Zhou
IFAC-PapersOnLine 58 (11), 201-206, 2024
12024
A Kullback-Leibler Divergence Filter for Anomaly Detection in Non-Destructive Pipeline Inspection
R Zhou
Université d'Ottawa/University of Ottawa, 2020
12020
Learning Koopman-based Stability Certificates for Unknown Nonlinear Systems
R Zhou, Y Meng, Z Zeng, J Liu
arXiv preprint arXiv:2412.02807, 2024
2024
Data-driven optimal control of unknown nonlinear dynamical systems using the Koopman operator
Z Zeng, R Zhou, Y Meng, J Liu
arXiv preprint arXiv:2412.01085, 2024
2024
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20