Seguir
Alan N Amin
Alan N Amin
PhD student Harvard Medical School
Dirección de correo verificada de g.harvard.edu - Página principal
Título
Citado por
Citado por
Año
Coarse-grained residue-based models of disordered protein condensates: utility and limitations of simple charge pattern parameters
S Das, AN Amin, YH Lin, HS Chan
Physical Chemistry Chemical Physics 20 (45), 28558-28574, 2018
1212018
Controlled release strategy designed for intravitreal protein delivery to the retina
V Delplace, A Ortin-Martinez, ELS Tsai, AN Amin, V Wallace, MS Shoichet
Journal of Controlled Release 293, 10-20, 2019
662019
Analytical theory for sequence-specific binary fuzzy complexes of charged intrinsically disordered proteins
AN Amin, YH Lin, S Das, HS Chan
The Journal of Physical Chemistry B 124 (31), 6709-6720, 2020
432020
Non-identifiability and the blessings of misspecification in models of molecular fitness
E Weinstein, A Amin, J Frazer, D Marks
Advances in neural information processing systems 35, 5484-5497, 2022
232022
Optimal design of stochastic DNA synthesis protocols based on generative sequence models
EN Weinstein, AN Amin, WS Grathwohl, D Kassler, J Disset, D Marks
International Conference on Artificial Intelligence and Statistics, 7450-7482, 2022
232022
A generative nonparametric Bayesian model for whole genomes
A Amin, EN Weinstein, D Marks
Advances in Neural Information Processing Systems 34, 27798-27812, 2021
122021
A kernelized Stein discrepancy for biological sequences
AN Amin, EN Weinstein, DS Marks
International Conference on Machine Learning, 718-767, 2023
42023
Biological sequence kernels with guaranteed flexibility
AN Amin, EN Weinstein, DS Marks
arXiv preprint arXiv:2304.03775, 2023
42023
Manufacturing-aware generative model architectures enable biological sequence design and synthesis at Petascale
EN Weinstein, MG Gollub, A Slabodkin, CL Gardner, K Dobbs, XB Cui, ...
bioRxiv, 2024.09. 13.612900, 2024
32024
Nonparametric Methods for Building and Evaluating Models of Biological Sequences
AN Amin
Harvard University, 2023
12023
Bayesian Optimization of Antibodies Informed by a Generative Model of Evolving Sequences
AN Amin, N Gruver, Y Kuang, L Li, H Elliott, C McCarter, A Raghu, ...
arXiv preprint arXiv:2412.07763, 2024
2024
Scalable and Flexible Causal Discovery with an Efficient Test for Adjacency
AN Amin, AG Wilson
arXiv preprint arXiv:2406.09177, 2024
2024
Kernel-Based Evaluation of Conditional Biological Sequence Models
P Glaser, S Paul, AM Hummer, C Deane, DS Marks, AN Amin
Forty-first International Conference on Machine Learning, 2024
2024
Theory for a Sequence-Specific “Fuzzy” Binding Mechanism Between a Pair of Intrinsically Disordered Proteins
AN Amin, YH Lin, S Das, HS Chan
arXiv preprint arXiv:1910.11194, 2019
2019
Theoretical Perspectives on Cellular Compartmentalization by Phase Separation
YH Lin, S Das, A Amin, A Eisen, J Forman-Kay, HS Chan
APS March Meeting Abstracts 2019, V54. 001, 2019
2019
Cluster-expansion theory for sequence-specific''fuzzy''interaction between a pair of intrinsically disordered proteins
A Amin, YH Lin, S Das, HS Chan
APS March Meeting Abstracts 2019, Y64. 004, 2019
2019
Bringing furan/maleimide Diels-Alder HA hydrogel chemistry to physiological conditions, for biomedical applications
V Delplace, A Amin, M Shoichet
ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY 255, 2018
2018
Improving Discrete Diffusion with Schedule-Conditioning
AN Amin, N Gruver, AG Wilson
Kernelized Stein Discrepancies for Biological Sequences
AN Amin, EN Weinstein, DS Marks
NeurIPS 2022 Workshop on Learning Meaningful Representations of Life, 0
Designing Proteins using Sparse Data
A Shaw, JE Shin, NN Thadani, AN Amin, DS Marks
NeurIPS 2022 Workshop on Learning Meaningful Representations of Life, 0
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20