Seguir
Çağatay Berke Erdaş
Çağatay Berke Erdaş
Dirección de correo verificada de baskent.edu.tr - Página principal
Título
Citado por
Citado por
Año
Integrating features for accelerometer-based activity recognition
ÇB Erdaş, I Atasoy, K Açıcı, H Oğul
Procedia Computer Science 98, 522-527, 2016
1102016
Parkinson's disease monitoring from gait analysis via foot-worn sensors
T Aşuroğlu, K Açıcı, ÇB Erdaş, MK Toprak, H Erdem, H Oğul
Biocybernetics and Biomedical Engineering 38 (3), 760-772, 2018
712018
A random forest method to detect Parkinson’s disease via gait analysis
K Açıcı, ÇB Erdaş, T Aşuroğlu, MK Toprak, H Erdem, H Oğul
Engineering Applications of Neural Networks: 18th International Conference …, 2017
612017
Neurodegenerative disease detection and severity prediction using deep learning approaches
ÇB Erdaş, E Sümer, S Kibaroğlu
Biomedical Signal Processing and Control 70, 103069, 2021
342021
Human activity recognition by using different deep learning approaches for wearable sensors
ÇB Erdaş, S Güney
Neural Processing Letters 53 (3), 1795-1809, 2021
282021
A deep LSTM approach for activity recognition
S Güney, ÇB Erdaş
2019 42nd International Conference on Telecommunications and Signal …, 2019
272019
CNN-based severity prediction of neurodegenerative diseases using gait data
Ç Berke Erdaş, E Sümer, S Kibaroğlu
Digital Health 8, 20552076221075147, 2022
232022
A machine learning-based approach to detect survival of heart failure patients
ÇB Erdaş, D Ölçer
2020 Medical Technologies Congress (TIPTEKNO), 1-4, 2020
172020
HANDY: A benchmark dataset for context-awareness via wrist-worn motion sensors
K Açıcı, ÇB Erdaş, T Aşuroğlu, H Oğul
Data 3 (3), 24, 2018
172018
Detection of cataract, diabetic retinopathy and glaucoma eye diseases with deep learning approach
G ARSLAN, ÇB Erdaş
Intelligent Methods In Engineering Sciences 2 (2), 42-47, 2023
162023
A fully automated approach involving neuroimaging and deep learning for Parkinson’s disease detection and severity prediction
ÇB Erdaş, E Sümer
PeerJ Computer Science 9, e1485, 2023
122023
T4SS effector protein prediction with deep learning
K Açıcı, T Aşuroğlu, ÇB Erdaş, H Oğul
Data 4 (1), 45, 2019
122019
Neurodegenerative diseases detection and grading using gait dynamics
ÇB Erdaş, E Sümer, S Kibaroğlu
Multimedia tools and applications 82 (15), 22925-22942, 2023
102023
Texture of activities: exploiting local binary patterns for accelerometer data analysis
T Aşuroğlu, K Açici, ÇB Erdaş, H Oğul
2016 12th International Conference on Signal-Image Technology & Internet …, 2016
92016
A deep learning method to detect Parkinson’s disease from MRI slices
ÇB Erdaş, E Sümer
SN Computer Science 3 (2), 120, 2022
72022
Detection and differentiation of COVID-19 using deep learning approach fed by x-rays
ÇB Erdaş, D Ölçer
International Journal of Applied Mathematics Electronics and Computers 8 (3 …, 2020
62020
A deep learning-based approach to detect neurodegenerative diseases
ÇB Erdaş, E Sümer
2020 Medical Technologies Congress (TIPTEKNO), 1-4, 2020
52020
Enhancing Skin Disease Diagnosis Through Deep Learning: A Comprehensive Study on Dermoscopic Image Preprocessing and Classification
ENH Kırğıl, ÇB Erdaş
International Journal of Imaging Systems and Technology 34 (4), e23148, 2024
32024
CNN‐Based Neurodegenerative Disease Classification Using QR‐Represented Gait Data
ÇB Erdaş, E Sümer
Brain and Behavior 14 (10), e70100, 2024
22024
Automated detection of type 1 ROP, type 2 ROP and A-ROP based on deep learning
E Kıran Yenice, C Kara, ÇB Erdaş
Eye 38 (13), 2644-2648, 2024
22024
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20