Seguir
mingda zhang
mingda zhang
The Chinese University of Hong Kong, Shenzhen
Dirección de correo verificada de link.cuhk.edu.cn
Título
Citado por
Citado por
Año
Backdoorbench: A comprehensive benchmark of backdoor learning
B Wu, H Chen, M Zhang, Z Zhu, S Wei, D Yuan, C Shen
Advances in Neural Information Processing Systems 35, 10546-10559, 2022
1352022
Shared adversarial unlearning: Backdoor mitigation by unlearning shared adversarial examples
S Wei, M Zhang, H Zha, B Wu
Advances in Neural Information Processing Systems 36, 25876-25909, 2023
292023
Defenses in adversarial machine learning: A survey
B Wu, S Wei, M Zhu, M Zheng, Z Zhu, M Zhang, H Chen, D Yuan, L Liu, ...
arXiv preprint arXiv:2312.08890, 2023
152023
Vdc: Versatile data cleanser for detecting dirty samples via visual-linguistic inconsistency
Z Zhu, M Zhang, S Wei, B Wu, B Wu
arXiv preprint arXiv:2309.16211, 2023
52023
Boosting backdoor attack with a learnable poisoning sample selection strategy
Z Zhu, M Zhang, S Wei, L Shen, Y Fan, B Wu
arXiv preprint arXiv:2307.07328, 2023
52023
BackdoorBench: A Comprehensive Benchmark and Analysis of Backdoor Learning
B Wu, H Chen, M Zhang, Z Zhu, S Wei, D Yuan, M Zhu, R Wang, L Liu, ...
arXiv preprint arXiv:2401.15002, 2024
42024
VDC: Versatile Data Cleanser based on Visual-Linguistic Inconsistency by Multimodal Large Language Models
Z Zhu, M Zhang, S Wei, B Wu, B Wu
The Twelfth International Conference on Learning Representations, 2024
42024
Activation Gradient based Poisoned Sample Detection Against Backdoor Attacks
D Yuan, S Wei, M Zhang, L Liu, B Wu
arXiv preprint arXiv:2312.06230, 2023
32023
Reliable Poisoned Sample Detection against Backdoor Attacks Enhanced by Sharpness Aware Minimization
M Zhang, M Zhu, Z Zhu, B Wu
arXiv preprint arXiv:2411.11525, 2024
2024
EFFECTIVE FREQUENCY-BASED BACKDOOR ATTACKS WITH LOW POISONING RATIOS
D Yuan, M Zhang, S Wei, S Yang, B Wu
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–10