Seguir
Junyuan (Jason) Hong
Junyuan (Jason) Hong
Otros nombresJunyuan Hong
Dirección de correo verificada de utexas.edu - Página principal
Título
Citado por
Citado por
Año
Data-free knowledge distillation for heterogeneous federated learning
Z Zhu, J Hong, J Zhou
International conference on machine learning, 12878-12889, 2021
7572021
Efficient Split-Mix Federated Learning for On-Demand and In-Situ Customization
J Hong, H Wang, Z Wang, J Zhou
International Conference on Learning Representations, 2022
572022
Federated robustness propagation: sharing adversarial robustness in heterogeneous federated learning
J Hong, H Wang, Z Wang, J Zhou
Proceedings of the AAAI Conference on Artificial Intelligence 37 (7), 7893-7901, 2023
54*2023
Federated adversarial debiasing for fair and transferable representations
J Hong, Z Zhu, S Yu, Z Wang, HH Dodge, J Zhou
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data …, 2021
542021
Revisiting Zeroth-Order Optimization for Memory-Efficient LLM Fine-Tuning: A Benchmark
Y Zhang, P Li, J Hong, J Li, Y Zhang, W Zheng, PY Chen, JD Lee, W Yin, ...
ICML, 2024
382024
DP-OPT: Make Large Language Model Your Privacy-Preserving Prompt Engineer
J Hong, JT Wang, C Zhang, Z Li, B Li, Z Wang
ICLR 2024, 2023
38*2023
MECTA: Memory-Economic Continual Test-Time Model Adaptation
J Hong, L Lyu, J Zhou, M Spranger
International Conference on Learning Representations, 2023
372023
Resilient and communication efficient learning for heterogeneous federated systems
Z Zhu, J Hong, S Drew, J Zhou
Proceedings of Thirty-ninth International Conference on Machine Learning …, 2022
332022
A privacy-preserving hybrid federated learning framework for financial crime detection
H Zhang, J Hong, F Dong, S Drew, L Xue, J Zhou
KDD International Workshop on Federated Learning for Distributed Data Mining, 2023
232023
LLM-PBE: Assessing Data Privacy in Large Language Models
Q Li, J Hong, C Xie, J Tan, R Xin, J Hou, X Yin, Z Wang, D Hendrycks, ...
VLDB, 2024
142024
Decoding Compressed Trust: Scrutinizing the Trustworthiness of Efficient LLMs Under Compression
J Hong, J Duan, C Zhang, Z Li, C Xie, K Lieberman, J Diffenderfer, ...
ICML, 2024
142024
Shake to Leak: Fine-tuning Diffusion Models Can Amplify the Generative Privacy Risk
Z Li, J Hong, B Li, Z Wang
2nd IEEE Conference on Secure and Trustworthy Machine Learning, 2024
142024
Turning the Curse of Heterogeneity in Federated Learning into a Blessing for Out-of-Distribution Detection
S Yu, J Hong, H Wang, Z Wang, J Zhou
International Conference on Learning Representations, 2023
142023
Variant grassmann manifolds: A representation augmentation method for action recognition
J Hong, Y Li, H Chen
ACM Transactions on Knowledge Discovery from Data (TKDD) 13 (2), 1-23, 2019
142019
Trap and Replace: Defending Backdoor Attacks by Trapping Them into an Easy-to-Replace Subnetwork
H Wang, J Hong, A Zhang, J Zhou, Z Wang
NeurIPS 2022, 2022
132022
Dynamic Privacy Budget Allocation Improves Data Efficiency of Differentially Private Gradient Descent
J Hong, Z Wang, J Zhou
ACM Conference on Fairness, Accountability, and Transparency, 11-35, 2022
132022
How robust is your fairness? evaluating and sustaining fairness under unseen distribution shifts
H Wang, J Hong, J Zhou, Z Wang
Transactions on machine learning research 2023, 2023
122023
Learning model-based privacy protection under budget constraints
J Hong, H Wang, Z Wang, J Zhou
Proceedings of the AAAI Conference on Artificial Intelligence 35 (9), 7702-7710, 2021
122021
Short sequence classification through discriminable linear dynamical system
Y Li, J Hong, H Chen
IEEE Transactions on neural networks and learning systems 30 (11), 3396-3408, 2019
122019
GuardAgent: Safeguard LLM Agents by a Guard Agent via Knowledge-Enabled Reasoning
Z Xiang, L Zheng, Y Li, J Hong, Q Li, H Xie, J Zhang, Z Xiong, C Xie, ...
arXiv preprint arXiv:2406.09187, 2024
102024
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20