The llama 3 herd of models A Dubey, A Jauhri, A Pandey, A Kadian, A Al-Dahle, A Letman, A Mathur, ... arXiv preprint arXiv:2407.21783, 2024 | 2281 | 2024 |
Exploiting Image-trained CNN Architectures for Unconstrained Video Classification S Zha, F Luisier, W Andrews, N Srivastava, R Salakhutdinov British Machine Vision Conference (BMVC), 60.1-60.13, 2015 | 282 | 2015 |
Sf-net: Single-frame supervision for temporal action localization F Ma, L Zhu, Y Yang, S Zha, G Kundu, M Feiszli, Z Shou Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23 …, 2020 | 179 | 2020 |
Ego-exo4d: Understanding skilled human activity from first-and third-person perspectives K Grauman, A Westbury, L Torresani, K Kitani, J Malik, T Afouras, ... Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2024 | 131 | 2024 |
Only time can tell: Discovering temporal data for temporal modeling L Sevilla-Lara, S Zha, Z Yan, V Goswami, M Feiszli, L Torresani Proceedings of the IEEE/CVF winter conference on applications of computer …, 2021 | 91 | 2021 |
The Llama 3 Herd of Models L team https://ai.meta.com/research/publications/the-llama-3-herd-of-models/, 2024 | 74 | 2024 |
The llama 3 herd of models A Grattafiori, A Dubey, A Jauhri, A Pandey, A Kadian, A Al-Dahle, ... arXiv e-prints, arXiv: 2407.21783, 2024 | 69 | 2024 |
Egocom: A multi-person multi-modal egocentric communications dataset C Northcutt, S Zha, S Lovegrove, R Newcombe IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020 | 29 | 2020 |
Hierarchical bilevel image compression based on cutset sampling S Zha, TN Pappas, DL Neuhoff 2012 19th IEEE International Conference on Image Processing, 2517-2520, 2012 | 13 | 2012 |
Hierarchical lossy bilevel image compression based on cutset sampling S Zha, TN Pappas, DL Neuhoff IEEE Transactions on Image Processing 30, 1527-1541, 2020 | 9 | 2020 |
Text classification via iVector based feature representation S Zha, X Peng, H Cao, X Zhuang, P Natarajan, P Natarajan 2014 11th IAPR International Workshop on Document Analysis Systems, 151-155, 2014 | 8 | 2014 |
BEHAVIOR Vision Suite: Customizable Dataset Generation via Simulation Y Ge, Y Tang, J Xu, C Gokmen, C Li, W Ai, BJ Martinez, A Aydin, M Anvari, ... Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2024 | 3 | 2024 |
Pattern-based k-level cutset reconstruction S Zha, TN Pappas 2015 IEEE International Conference on Image Processing (ICIP), 3344-3348, 2015 | 3 | 2015 |
A Markov chain based line segmentation framework for handwritten character recognition Y Wu, S Zha, H Cao, D Liu, P Natarajan Document Recognition and Retrieval XXI 9021, 99-110, 2014 | 3 | 2014 |
Generalized k-level cutset sampling and reconstruction S Zha, TN Pappas 2016 IEEE International Conference on Acoustics, Speech and Signal …, 2016 | 2 | 2016 |
A hybrid Markov random field model for bilevel cutset reconstruction S Zha, TN Pappas 2016 IEEE International Conference on Image Processing (ICIP), 3523-3527, 2016 | 1 | 2016 |
Building a Mind Palace: Structuring Environment-Grounded Semantic Graphs for Effective Long Video Analysis with LLMs Z Huang, Y Ji, X Wang, N Mehta, T Xiao, D Lee, S Vanvalkenburgh, S Zha, ... arXiv preprint arXiv:2501.04336, 2025 | | 2025 |
Human Action Anticipation: A Survey B Lai, S Toyer, T Nagarajan, R Girdhar, S Zha, JM Rehg, K Kitani, ... arXiv preprint arXiv:2410.14045, 2024 | | 2024 |
Pattern-Based Reconstruction of K-Level Images From Cutsets S Zha, D Tian, TN Pappas IEEE Transactions on Image Processing 31, 5529-5542, 2022 | | 2022 |
Cutset-based Image Segmentation, Reconstruction, and Compression S Zha Northwestern University, 2016 | | 2016 |