Bayesian filtering for ODEs with bounded derivatives E Magnani, H Kersting, M Schober, P Hennig arXiv preprint arXiv:1709.08471, 2017 | 10 | 2017 |
Approximate Bayesian neural operators: Uncertainty quantification for parametric PDEs E Magnani, N Krämer, R Eschenhagen, L Rosasco, P Hennig arXiv preprint arXiv:2208.01565, 2022 | 8 | 2022 |
Full history recursive multilevel Picard approximations for ordinary differential equations with expectations C Beck, M Hutzenthaler, A Jentzen, E Magnani arXiv preprint arXiv:2103.02350, 2021 | 6 | 2021 |
Uncertainty Quantification for Fourier Neural Operators T Weber, E Magnani, M Pförtner, P Hennig ICLR 2024 Workshop on AI4DifferentialEquations In Science, 2024 | 4 | 2024 |
Linearization Turns Neural Operators into Function-Valued Gaussian Processes E Magnani, M Pförtner, T Weber, P Hennig arXiv preprint arXiv:2406.05072, 2024 | 2 | 2024 |
Learning convolution operators on compact Abelian groups E Magnani, E De Vito, P Hennig, L Rosasco arXiv preprint arXiv:2501.05279, 2025 | | 2025 |
Linearization Turns Neural Operators into Function-Valued Gaussian Processes P Hennig, T Weber, M Pförtner, E Magnani arXiv, 2024 | | 2024 |