Low-rank high-order tensor completion with applications in visual data W Qin, H Wang, F Zhang, J Wang, X Luo, T Huang IEEE Transactions on Image Processing 31, 2433-2448, 2022 | 124 | 2022 |
Generalized nonconvex approach for low-tubal-rank tensor recovery H Wang, F Zhang, J Wang, T Huang, J Huang, X Liu IEEE Transactions on Neural Networks and Learning Systems 33 (8), 3305-3319, 2021 | 71 | 2021 |
Guaranteed tensor recovery fused low-rankness and smoothness H Wang, J Peng, W Qin, J Wang, D Meng IEEE Transactions on Pattern Analysis and Machine Intelligence 45 (9), 10990 …, 2023 | 67 | 2023 |
Low-tubal-rank plus sparse tensor recovery with prior subspace information F Zhang, J Wang, W Wang, C Xu IEEE transactions on pattern analysis and machine intelligence 43 (10), 3492 …, 2020 | 58 | 2020 |
Robust low-tubal-rank tensor recovery from binary measurements J Hou, F Zhang, H Qiu, J Wang, Y Wang, D Meng IEEE Transactions on Pattern Analysis and Machine Intelligence 44 (8), 4355-4373, 2021 | 46 | 2021 |
Improved sufficient condition of ℓ1–2‐minimisation for robust signal recovery W Wang, J Wang Electronics Letters 55 (22), 1199-1201, 2019 | 30 | 2019 |
A nonconvex penalty function with integral convolution approximation for compressed sensing J Wang, F Zhang, J Huang, W Wang, C Yuan Signal Processing 158, 116-128, 2019 | 29 | 2019 |
LSMM: a statistical approach to integrating functional annotations with genome-wide association studies J Ming, M Dai, M Cai, X Wan, J Liu, C Yang Bioinformatics 34 (16), 2788-2796, 2018 | 25 | 2018 |
Robust signal recovery with highly coherent measurement matrices W Wang, J Wang, Z Zhang IEEE Signal Processing Letters 24 (3), 304-308, 2016 | 23 | 2016 |
Low-rank matrix recovery via regularized nuclear norm minimization W Wang, F Zhang, J Wang Applied and Computational Harmonic Analysis 54, 1-19, 2021 | 22 | 2021 |
Fast and efficient algorithm for matrix completion via closed-form 2/3-thresholding operator Z Wang, W Wang, J Wang, S Chen Neurocomputing 330, 212-222, 2019 | 22 | 2019 |
Block‐sparse signal recovery via minimisation method W Wang, J Wang, Z Zhang IET Signal Processing 12 (4), 422-430, 2018 | 20 | 2018 |
Group sparse recovery in impulsive noise via alternating direction method of multipliers J Wang, J Huang, F Zhang, W Wang Applied and Computational Harmonic Analysis 49 (3), 831-862, 2020 | 19 | 2020 |
RIP-based performance guarantee for low-tubal-rank tensor recovery F Zhang, W Wang, J Huang, J Wang, Y Wang Journal of Computational and Applied Mathematics 374, 112767, 2020 | 16 | 2020 |
BIVAS: a scalable Bayesian method for bi-level variable selection with applications M Cai, M Dai, J Ming, H Peng, J Liu, C Yang Journal of Computational and Graphical Statistics 29 (1), 40-52, 2020 | 16 | 2020 |
A perturbation analysis of nonconvex block-sparse compressed sensing J Wang, J Zhang, W Wang, C Yang Communications in Nonlinear Science and Numerical Simulation 29 (1-3), 416-426, 2015 | 16 | 2015 |
IGESS: a statistical approach to integrating individual-level genotype data and summary statistics in genome-wide association studies M Dai, J Ming, M Cai, J Liu, C Yang, X Wan, Z Xu Bioinformatics 33 (18), 2882-2889, 2017 | 15 | 2017 |
Enhancing Matrix Completion Using a Modified Second‐Order Total Variation W Wang, J Wang Discrete Dynamics in Nature and Society 2018 (1), 2598160, 2018 | 14 | 2018 |
Performance guarantees of transformed schatten-1 regularization for exact low-rank matrix recovery Z Wang, D Hu, X Luo, W Wang, J Wang, W Chen International Journal of Machine Learning and Cybernetics 12, 3379-3395, 2021 | 13 | 2021 |
One-bit tensor completion via transformed tensor singular value decomposition J Hou, F Zhang, J Wang Applied Mathematical Modelling 95, 760-782, 2021 | 13 | 2021 |