Seguir
Richard Meyes
Richard Meyes
Dirección de correo verificada de uni-wuppertal.de
Título
Citado por
Citado por
Año
Ablation studies in artificial neural networks
R Meyes, M Lu, CW de Puiseau, T Meisen
arXiv preprint arXiv:1901.08644, 2019
3322019
Motion planning for industrial robots using reinforcement learning
R Meyes, H Tercan, S Roggendorf, T Thiele, C Büscher, M Obdenbusch, ...
Procedia CIRP 63, 107-112, 2017
1042017
Multi-agent reinforcement learning for job shop scheduling in flexible manufacturing systems
S Baer, J Bakakeu, R Meyes, T Meisen
2019 Second International Conference on Artificial Intelligence for …, 2019
662019
On reliability of reinforcement learning based production scheduling systems: a comparative survey
C Waubert de Puiseau, R Meyes, T Meisen
Journal of Intelligent Manufacturing 33 (4), 911-927, 2022
482022
A recurrent neural network architecture for failure prediction in deep drawing sensory time series data
R Meyes, J Donauer, A Schmeing, T Meisen
Procedia Manufacturing 34, 789-797, 2019
422019
Interdisciplinary data driven production process analysis for the internet of production
R Meyes, H Tercan, T Thiele, A Krämer, J Heinisch, M Liebenberg, G Hirt, ...
Procedia Manufacturing 26, 1065-1076, 2018
312018
Under the hood of neural networks: Characterizing learned representations by functional neuron populations and network ablations
R Meyes, CW de Puiseau, A Posada-Moreno, T Meisen
arXiv preprint arXiv:2004.01254, 2020
282020
Vision transformer in industrial visual inspection
N Hütten, R Meyes, T Meisen
Applied Sciences 12 (23), 11981, 2022
212022
Ablation studies to uncover structure of learned representations in artificial neural networks
R Meyes, M Lu, CW de Puiseau, T Meisen
Proceedings on the International Conference on Artificial Intelligence (ICAI …, 2019
202019
Deep Learning for Automated Visual Inspection in Manufacturing and Maintenance: A Survey of Open-Access Papers
N Hütten, M Alves Gomes, F Hölken, K Andricevic, R Meyes, T Meisen
Applied System Innovation 7 (1), 11, 2024
192024
Time series dataset survey for forecasting with deep learning
Y Hahn, T Langer, R Meyes, T Meisen
Forecasting 5 (1), 315-335, 2023
182023
Will this online shopping session succeed? predicting customer's purchase intention using embeddings
M Alves Gomes, R Meyes, P Meisen, T Meisen
Proceedings of the 31st ACM international conference on information …, 2022
152022
Continuous motion planning for industrial robots based on direct sensory input
R Meyes, C Scheiderer, T Meisen
Procedia CIRP 72, 291-296, 2018
152018
Discovering heuristics and metaheuristics for job shop scheduling from scratch via deep reinforcement learning
T Van Ekeris, R Meyes, T Meisen
ESSN: 2701-6277, 2021
132021
Ablation of a Robot's Brain: Neural Networks Under a Knife
PE Lillian, R Meyes, T Meisen
arXiv preprint arXiv:1812.05687, 2018
92018
Transparent and Interpretable State of Health Forecasting of Lithium‐Ion Batteries with Deep Learning and Saliency Maps
F von Bülow, Y Hahn, R Meyes, T Meisen
International Journal of Energy Research 2023 (1), 9922475, 2023
62023
Transparent and interpretable failure prediction of sensor time series data with convolutional neural networks
R Meyes, N Hütten, T Meisen
Procedia CIRP 104, 1446-1451, 2021
52021
How do you act? an empirical study to understand behavior of deep reinforcement learning agents
R Meyes, M Schneider, T Meisen
arXiv preprint arXiv:2004.03237, 2020
52020
Transparency and Interpretability for Learned Representations of Artificial Neural Networks
R Meyes
Springer Nature, 2022
32022
Researchers’ Concerns on Artificial Intelligence Ethics: Results from a Scenario-Based Survey
M Jantunen, R Meyes, V Kurchyna, T Meisen, P Abrahamsson, ...
Proceedings of the 7th ACM/IEEE International Workshop on Software-intensive …, 2024
22024
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20