Seguir
Amanda Howard
Título
Citado por
Citado por
Año
Multifidelity deep operator networks for data-driven and physics-informed problems
AA Howard, M Perego, GE Karniadakis, P Stinis
Journal of Computational Physics 493, 112462, 2023
75*2023
Learning unknown physics of non-Newtonian fluids
B Reyes, AA Howard, P Perdikaris, AM Tartakovsky
Physical Review Fluids 6 (7), 073301, 2021
652021
A conservative level set method for N-phase flows with a free-energy-based surface tension model
AA Howard, AM Tartakovsky
Journal of Computational Physics 426, 109955, 2021
272021
Finite basis Kolmogorov-Arnold networks: domain decomposition for data-driven and physics-informed problems
AA Howard, B Jacob, SH Murphy, A Heinlein, P Stinis
arXiv preprint arXiv:2406.19662, 2024
232024
A hybrid deep neural operator/finite element method for ice-sheet modeling
QZ He, M Perego, AA Howard, GE Karniadakis, P Stinis
Journal of Computational Physics 492, 112428, 2023
192023
Stacked networks improve physics-informed training: applications to neural networks and deep operator networks
AA Howard, SH Murphy, SE Ahmed, P Stinis
arXiv preprint arXiv:2311.06483, 2023
172023
Physics-informed CoKriging model of a redox flow battery
AA Howard, T Yu, W Wang, AM Tartakovsky
Journal of Power Sources 542, 231668, 2022
132022
Machine Learning in Heterogeneous Porous Materials
M D'Elia, H Deng, C Fraces, K Garikipati, L Graham-Brady, A Howard, ...
arXiv preprint arXiv:2202.04137, 2022
132022
Settling of heavy particles in concentrated suspensions of neutrally buoyant particles under uniform shear
A Howard, M Maxey, K Yeo
Fluid Dynamics Research, 2018
82018
A multifidelity approach to continual learning for physical systems
A Howard, Y Fu, P Stinis
Machine Learning: Science and Technology 5 (2), 025042, 2024
72024
Multifidelity domain decomposition-based physics-informed neural networks for time-dependent problems
A Heinlein, AA Howard, D Beecroft, P Stinis
arXiv preprint arXiv:2401.07888, 2024
72024
Simulation study of particle clouds in oscillating shear flow
AA Howard, MR Maxey
Journal of Fluid Mechanics 852, 484-506, 2018
72018
Self-adaptive weights based on balanced residual decay rate for physics-informed neural networks and deep operator networks
W Chen, AA Howard, P Stinis
arXiv preprint arXiv:2407.01613, 2024
62024
Dispersion of a suspension plug in oscillatory pressure-driven flow
FR Cui, AA Howard, MR Maxey, A Tripathi
Physical Review Fluids 2 (9), 094303, 2017
62017
Efficient kernel surrogates for neural network-based regression
S Qadeer, A Engel, A Howard, A Tsou, M Vargas, P Stinis, T Chiang
arXiv preprint arXiv:2310.18612, 2023
52023
SPIKANs: Separable Physics-Informed Kolmogorov-Arnold Networks
B Jacob, AA Howard, P Stinis
arXiv preprint arXiv:2411.06286, 2024
42024
Physics-Guided Continual Learning for Predicting Emerging Aqueous Organic Redox Flow Battery Material Performance
Y Fu, A Howard, C Zeng, Y Chen, P Gao, P Stinis
ACS Energy Letters 9, 2767-2774, 2024
42024
Hydrodynamic irreversibility of non-Brownian suspensions in highly confined duct flow
JT Antolik, A Howard, F Vereda, N Ionkin, M Maxey, DM Harris
Journal of Fluid Mechanics 974, A11, 2023
4*2023
Bidisperse suspension balance model
AA Howard, MR Maxey, S Gallier
Physical Review Fluids 7 (12), 124301, 2022
42022
Non-local model for surface tension in fluid-fluid simulations
AA Howard, AM Tartakovsky
Journal of Computational Physics 421, 109732, 2020
42020
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20