Seguir
Taylor W. Killian
Taylor W. Killian
Graduate Researcher, University of Toronto
Dirección de correo verificada de cs.toronto.edu - Página principal
Título
Citado por
Citado por
Año
Optimization methods for interpretable differentiable decision trees applied to reinforcement learning
A Silva, M Gombolay, T Killian, I Jimenez, SH Son
International conference on artificial intelligence and statistics, 1855-1865, 2020
180*2020
Robust and Efficient Transfer Learning with Hidden Parameter Markov Decision Processes
TW Killian, S Daulton, F Doshi-Velez, G Konidaris
Advances in Neural Information Processing Systems, 6251-6262, 2017
1322017
Medical dead-ends and learning to identify high-risk states and treatments
M Fatemi, TW Killian, J Subramanian, M Ghassemi
Advances in Neural Information Processing Systems 34, 4856-4870, 2021
522021
An empirical study of representation learning for reinforcement learning in healthcare
TW Killian, H Zhang, J Subramanian, M Fatemi, M Ghassemi
Proceedings of the Machine Learning for Health NeurIPS Workshop 136, 139-160, 2020
482020
Direct Policy Transfer with Hidden Parameter Markov Decision Processes
J Yao, TW Killian, G Konidaris, F Doshi-Velez
Lifelong Learning: A Reinforcement Learning Approach Workshop at FAIM 2018, 2018
32*2018
Rebound and jet formation of a fluid-filled sphere
TW Killian, RA Klaus, TT Truscott
Physics of Fluids 24 (12), 2012
132012
Counterfactually guided policy transfer in clinical settings
TW Killian, M Ghassemi, S Joshi
Conference on Health, Inference, and Learning, 5-31, 2022
122022
Multiple sclerosis severity classification from clinical text
AD Costa, S Denkovski, M Malyska, SY Moon, B Rufino, Z Yang, T Killian, ...
arXiv preprint arXiv:2010.15316, 2020
122020
Transfer Learning Across Patient Variations with Hidden Parameter Markov Decision Processes
T Killian, G Konidaris, F Doshi-Velez
arXiv preprint arXiv:1612.00475, 2016
122016
Risk Sensitive Dead-end Identification in Safety-Critical Offline Reinforcement Learning
TW Killian, S Parbhoo, M Ghassemi
Transactions on Machine Learning Research, 2023
102023
White-box adversarial policies in deep reinforcement learning
S Casper, T Killian, G Kreiman, D Hadfield-Menell
arXiv preprint arXiv:2209.02167, 2022
72022
Kernelized capsule networks
T Killian, J Goodwin, O Brown, SH Son
arXiv preprint arXiv:1906.03164, 2019
62019
Machine learning for health (ml4h) 2022
A Parziale, M Agrawal, S Tang, K Severson, L Oala, A Subbaswamy, ...
Machine Learning for Health, 1-11, 2022
32022
Systems and methods for detection of concealed threats
MA Deangelus, J Goodwin, N Kaushik, A Opipari, T Killian
US Patent App. 17/219,837, 2022
12022
Red teaming with mind reading: White-box adversarial policies against rl agents
S Casper, T Killian, G Kreiman, D Hadfield-Menell
arXiv preprint arXiv:2209.02167, 2022
12022
Self healing: solid spheres impacting soap bubbles
T Killian, J Bryson, J Huey, JC Bird, JC Nave, T Truscott
APS Division of Fluid Dynamics Meeting Abstracts, R4. 005, 2012
1*2012
Robust Autonomy Emerges from Self-Play
M Cusumano-Towner, D Hafner, A Hertzberg, B Huval, A Petrenko, ...
arXiv preprint arXiv:2502.03349, 2025
2025
Identifying Differential Patient Care Through Inverse Intent Inference
H Jeong, S Nayak, T Killian, S Kanjilal, M Ghassemi
arXiv preprint arXiv:2411.07372, 2024
2024
Offline Reinforcement Learning With Combinatorial Action Spaces
M Landers, TW Killian, H Barnes, T Hartvigsen, A Doryab
arXiv preprint arXiv:2410.21151, 2024
2024
Clinically Motivated Sequential Decision Making Under Uncertainty in Offline Settings
TW Killian
University of Toronto (Canada), 2024
2024
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20