Chain of thought prompting elicits reasoning in large language models J Wei, X Wang, D Schuurmans, M Bosma, E Chi, Q Le, D Zhou NeurIPS 2022, 2022 | 11832 | 2022 |
PaLM: Scaling Language Modeling with Pathways A Chowdhery, S Narang, J Devlin, M Bosma, G Mishra, A Roberts, ... Journal of Machine Learning Research, 2023 | 5643 | 2023 |
Finetuned language models are zero-shot learners J Wei, M Bosma, VY Zhao, K Guu, AW Yu, B Lester, N Du, AM Dai, QV Le ICLR 2022, 2021 | 3484 | 2021 |
Emergent abilities of large language models J Wei, Y Tay, R Bommasani, C Raffel, B Zoph, S Borgeaud, D Yogatama, ... Transactions on Machine Learning Research, 2022b, 2022 | 3426* | 2022 |
Lamda: Language models for dialog applications R Thoppilan, D De Freitas, J Hall, N Shazeer, A Kulshreshtha, HT Cheng, ... arXiv preprint arXiv:2201.08239, 2022 | 1753 | 2022 |
Program synthesis with large language models J Austin, A Odena, M Nye, M Bosma, H Michalewski, D Dohan, E Jiang, ... arXiv preprint arXiv:2108.07732, 2021 | 1541 | 2021 |
Beyond the imitation game: Quantifying and extrapolating the capabilities of language models A Srivastava, A Rastogi, A Rao, AAM Shoeb, A Abid, A Fisch, AR Brown, ... arXiv preprint arXiv:2206.04615, 2022 | 1338 | 2022 |
GLaM: Efficient scaling of language models with mixture-of-experts N Du, Y Huang, AM Dai, S Tong, D Lepikhin, Y Xu, M Krikun, Y Zhou, ... International Conference on Machine Learning, 5547-5569, 2022 | 797* | 2022 |
Show your work: Scratchpads for intermediate computation with language models M Nye, AJ Andreassen, G Gur-Ari, H Michalewski, J Austin, D Bieber, ... ICLR 2022 Workshop DL4C, 2021 | 644 | 2021 |
Chi, Quoc Le, and Denny Zhou. 2023 J Wei, X Wang, D Schuurmans, M Bosma, B Ichter, F Xia Chain-of-thought prompting elicits reasoning in large language models 3 (6), 2023 | 353 | 2023 |
Scaling up models and data with t5x and seqio A Roberts, HW Chung, G Mishra, A Levskaya, J Bradbury, D Andor, ... Journal of Machine Learning Research 24 (377), 1-8, 2023 | 162 | 2023 |
Palm: Scaling language modeling with pathways, 2022 A Chowdhery, S Narang, J Devlin, M Bosma, G Mishra, A Roberts, ... arXiv preprint arXiv:2204.02311, 2022 | 133 | 2022 |
Emergent abilities of large language models. arXiv 2022 J Wei, Y Tay, R Bommasani, C Raffel, B Zoph, S Borgeaud, D Yogatama, ... arXiv preprint arXiv:2206.07682, 2023 | 69 | 2023 |
A framework for unsupervised spam detection in social networking sites M Bosma, E Meij, W Weerkamp European Conference on Information Retrieval, 364-375, 2012 | 52 | 2012 |
Finetuned language models are zero-shot learners. arXiv 2021 J Wei, M Bosma, VY Zhao, K Guu, AW Yu, B Lester, N Du, AM Dai, QV Le arXiv preprint arXiv:2109.01652, 2021 | 51 | 2021 |
Lamda: Language models for dialog applications AD Cohen, A Roberts, A Molina, A Butryna, A Jin, A Kulshreshtha, ... arXiv preprint arXiv:2201.08239, 2022 | 36 | 2022 |
ichter b, Xia F, Chi E, Le QV, Zhou D (2022) Chain-of-thought prompting elicits reasoning in large language models J Wei, X Wang, D Schuurmans, M Bosma Advances in neural information processing systems 35, 24, 0 | 15 | |
Huai hsin Chi, F. Xia, Quoc Le, and Denny Zhou. 2022. Chain of thought prompting elicits reasoning in large language models J Wei, X Wang, D Schuurmans, M Bosma Conference on Neural Information Processing Systems, 0 | 13 | |
Performing machine learning tasks using instruction-tuned neural networks JW Wei, MP Bosma, Y Zhao, K Gu, QV Le US Patent App. 17/561,581, 2023 | 6 | 2023 |
Inflection-1 Inflection-AI https://inflection.ai/assets/Inflection-1.pdf, 2023 | 6* | 2023 |