دنبال کردن
Nathan Srebro
Nathan Srebro
Professor, TTIC and University of Chicago
ایمیل تأیید شده در ttic.edu
عنوان
نقل شده توسط
نقل شده توسط
سال
Equality of opportunity in supervised learning
M Hardt, E Price, N Srebro
Advances in neural information processing systems 29, 2016
53792016
Pegasos: Primal estimated sub-gradient solver for svm
S Shalev-Shwartz, Y Singer, N Srebro
Proceedings of the 24th international conference on Machine learning, 807-814, 2007
28962007
Exploring generalization in deep learning
B Neyshabur, S Bhojanapalli, D McAllester, N Srebro
Advances in neural information processing systems 30, 2017
15372017
Maximum-margin matrix factorization
N Srebro, J Rennie, T Jaakkola
Advances in neural information processing systems 17, 2004
14312004
The marginal value of adaptive gradient methods in machine learning
AC Wilson, R Roelofs, M Stern, N Srebro, B Recht
Advances in neural information processing systems 30, 2017
13812017
Fast maximum margin matrix factorization for collaborative prediction
JDM Rennie, N Srebro
Proceedings of the 22nd international conference on Machine learning, 713-719, 2005
13192005
The implicit bias of gradient descent on separable data
D Soudry, E Hoffer, MS Nacson, S Gunasekar, N Srebro
Journal of Machine Learning Research 19 (70), 1-57, 2018
10532018
Weighted low-rank approximations
N Srebro, T Jaakkola
Proceedings of the 20th international conference on machine learning (ICML …, 2003
10482003
In search of the real inductive bias: On the role of implicit regularization in deep learning
B Neyshabur, R Tomioka, N Srebro
arXiv preprint arXiv:1412.6614, 2014
7682014
Stochastic gradient descent, weighted sampling, and the randomized Kaczmarz algorithm
D Needell, R Ward, N Srebro
Advances in neural information processing systems 27, 2014
7362014
A pac-bayesian approach to spectrally-normalized margin bounds for neural networks
B Neyshabur, S Bhojanapalli, N Srebro
arXiv preprint arXiv:1707.09564, 2017
7152017
Norm-based capacity control in neural networks
B Neyshabur, R Tomioka, N Srebro
Conference on learning theory, 1376-1401, 2015
6882015
Towards understanding the role of over-parametrization in generalization of neural networks
B Neyshabur, Z Li, S Bhojanapalli, Y LeCun, N Srebro
arXiv preprint arXiv:1805.12076, 2018
6512018
Learnability, stability and uniform convergence
S Shalev-Shwartz, O Shamir, N Srebro, K Sridharan
The Journal of Machine Learning Research 11, 2635-2670, 2010
5902010
Implicit regularization in matrix factorization
S Gunasekar, BE Woodworth, S Bhojanapalli, B Neyshabur, N Srebro
Advances in neural information processing systems 30, 2017
5722017
Characterizing implicit bias in terms of optimization geometry
S Gunasekar, J Lee, D Soudry, N Srebro
International Conference on Machine Learning, 1832-1841, 2018
5022018
Rank, trace-norm and max-norm
N Srebro, A Shraibman
International conference on computational learning theory, 545-560, 2005
4902005
Implicit bias of gradient descent on linear convolutional networks
S Gunasekar, JD Lee, D Soudry, N Srebro
Advances in neural information processing systems 31, 2018
4762018
Global optimality of local search for low rank matrix recovery
S Bhojanapalli, B Neyshabur, N Srebro
Advances in Neural Information Processing Systems, 3873-3881, 2016
4662016
Learning non-discriminatory predictors
B Woodworth, S Gunasekar, MI Ohannessian, N Srebro
Conference on learning theory, 1920-1953, 2017
4592017
سیستم در حال حاضر قادر به انجام عملکرد نیست. بعداً دوباره امتحان کنید.
مقاله‌ها 1–20