دنبال کردن
Voot Tangkaratt
Voot Tangkaratt
Research scientist at Sony AI
ایمیل تأیید شده در sony.com
عنوان
نقل شده توسط
نقل شده توسط
سال
Fast and scalable bayesian deep learning by weight-perturbation in adam
M Khan, D Nielsen, V Tangkaratt, W Lin, Y Gal, A Srivastava
International conference on machine learning, 2611-2620, 2018
3262018
Imitation learning from imperfect demonstration
YH Wu, N Charoenphakdee, H Bao, V Tangkaratt, M Sugiyama
International Conference on Machine Learning, 6818-6827, 2019
1882019
Variational imitation learning with diverse-quality demonstrations
V Tangkaratt, B Han, ME Khan, M Sugiyama
International Conference on Machine Learning, 9407-9417, 2020
552020
TD-regularized actor-critic methods
S Parisi, V Tangkaratt, J Peters, ME Khan
Machine Learning 108, 1467-1501, 2019
482019
Efficient sample reuse in policy gradients with parameter-based exploration
T Zhao, H Hachiya, V Tangkaratt, J Morimoto, M Sugiyama
Neural computation 25 (6), 1512-1547, 2013
472013
Active deep Q-learning with demonstration
SA Chen, V Tangkaratt, HT Lin, M Sugiyama
Machine Learning 109 (9), 1699-1725, 2020
442020
Hierarchical reinforcement learning via advantage-weighted information maximization
T Osa, V Tangkaratt, M Sugiyama
arXiv preprint arXiv:1901.01365, 2019
402019
Discovering diverse solutions in deep reinforcement learning by maximizing state–action-based mutual information
T Osa, V Tangkaratt, M Sugiyama
Neural Networks 152, 90-104, 2022
372022
Model-based policy gradients with parameter-based exploration by least-squares conditional density estimation
V Tangkaratt, S Mori, T Zhao, J Morimoto, M Sugiyama
Neural networks 57, 128-140, 2014
352014
Robust imitation learning from noisy demonstrations
V Tangkaratt, N Charoenphakdee, M Sugiyama
arXiv preprint arXiv:2010.10181, 2020
302020
Guide actor-critic for continuous control
V Tangkaratt, A Abdolmaleki, M Sugiyama
arXiv preprint arXiv:1705.07606, 2017
292017
Model-based reinforcement learning with dimension reduction
V Tangkaratt, J Morimoto, M Sugiyama
Neural Networks 84, 1-16, 2016
242016
Variational adaptive-Newton method for explorative learning
ME Khan, W Lin, V Tangkaratt, Z Liu, D Nielsen
arXiv preprint arXiv:1711.05560, 2017
232017
Policy search with high-dimensional context variables
V Tangkaratt, H Van Hoof, S Parisi, G Neumann, J Peters, M Sugiyama
Proceedings of the AAAI Conference on Artificial Intelligence 31 (1), 2017
232017
Vprop: Variational inference using rmsprop
ME Khan, Z Liu, V Tangkaratt, Y Gal
arXiv preprint arXiv:1712.01038, 2017
172017
Direct conditional probability density estimation with sparse feature selection
M Shiga, V Tangkaratt, M Sugiyama
Machine Learning 100, 161-182, 2015
162015
Simultaneous Planning for Item Picking and Placing by Deep Reinforcement Learning
T Tanaka, T Kaneko, M Sekine, V Tangkaratt, M Sugiyama
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020
142020
Meta-model-based meta-policy optimization
T Hiraoka, T Imagawa, V Tangkaratt, T Osa, T Onishi, Y Tsuruoka
Asian Conference on Machine Learning, 129-144, 2021
132021
Direct estimation of the derivative of quadratic mutual information with application in supervised dimension reduction
V Tangkaratt, H Sasaki, M Sugiyama
Neural Computation 29 (8), 2076-2122, 2017
132017
Conditional density estimation with dimensionality reduction via squared-loss conditional entropy minimization
V Tangkaratt, N Xie, M Sugiyama
Neural computation 27 (1), 228-254, 2014
132014
سیستم در حال حاضر قادر به انجام عملکرد نیست. بعداً دوباره امتحان کنید.
مقاله‌ها 1–20