A theory of learning from different domains S Ben-David, J Blitzer, K Crammer, A Kulesza, F Pereira, JW Vaughan Machine learning 79, 151-175, 2010 | 4136 | 2010 |
Determinantal point processes for machine learning A Kulesza, B Taskar Foundations and Trends® in Machine Learning 5 (2–3), 123-286, 2012 | 1283 | 2012 |
Learning bounds for domain adaptation J Blitzer, K Crammer, A Kulesza, F Pereira, J Wortman Advances in neural information processing systems 20, 2007 | 606 | 2007 |
Confidence estimation for machine translation J Blatz, E Fitzgerald, G Foster, S Gandrabur, C Goutte, A Kulesza, ... Coling 2004: Proceedings of the 20th international conference on …, 2004 | 476 | 2004 |
Adaptive regularization of weight vectors K Crammer, A Kulesza, M Dredze Advances in neural information processing systems 22, 2009 | 400 | 2009 |
k-dpps: Fixed-size determinantal point processes A Kulesza, B Taskar Proceedings of the 28th International Conference on Machine Learning (ICML …, 2011 | 336 | 2011 |
Structured learning with approximate inference A Kulesza, F Pereira Advances in neural information processing systems 20, 2007 | 183 | 2007 |
The dependence of effective planning horizon on model accuracy N Jiang, A Kulesza, S Singh, R Lewis Proceedings of the 2015 international conference on autonomous agents and …, 2015 | 178 | 2015 |
Structured determinantal point processes A Kulesza, B Taskar Proc. NIPS, 2010 | 169 | 2010 |
Multi-domain learning by confidence-weighted parameter combination M Dredze, A Kulesza, K Crammer Machine Learning 79, 123-149, 2010 | 164 | 2010 |
A Repository of State of the Art and Competitive Baseline Summaries for Generic News Summarization. K Hong, JM Conroy, B Favre, A Kulesza, H Lin, A Nenkova LREC, 1608-1616, 2014 | 152 | 2014 |
Near-optimal map inference for determinantal point processes J Gillenwater, A Kulesza, B Taskar Advances in Neural Information Processing Systems 25, 2012 | 150 | 2012 |
Learning determinantal point processes A Kulesza, B Taskar Learning 7, 1-2011, 2011 | 139 | 2011 |
A learning approach to improving sentence-level MT evaluation A Kulesza, SM Shieber Proceedings of the 10th International Conference on Theoretical and …, 2004 | 133 | 2004 |
Expectation-maximization for learning determinantal point processes JA Gillenwater, A Kulesza, E Fox, B Taskar Advances in Neural Information Processing Systems 27, 2014 | 114 | 2014 |
Adaptive regularization of weight vectors K Crammer, A Kulesza, M Dredze Machine learning 91, 155-187, 2013 | 114 | 2013 |
Discovering diverse and salient threads in document collections J Gillenwater, A Kulesza, B Taskar Proceedings of the 2012 Joint Conference on Empirical Methods in Natural …, 2012 | 111 | 2012 |
Multi-class confidence weighted algorithms K Crammer, M Dredze, A Kulesza Proceedings of the 2009 conference on empirical methods in natural language …, 2009 | 107 | 2009 |
Empirical limitations on high frequency trading profitability M Kearns, A Kulesza, Y Nevmyvaka arXiv preprint arXiv:1007.2593, 2010 | 106 | 2010 |
Learning with user-level privacy D Levy, Z Sun, K Amin, S Kale, A Kulesza, M Mohri, AT Suresh Advances in Neural Information Processing Systems 34, 12466-12479, 2021 | 101 | 2021 |