Seuraa
Andrew J.R. Simpson, PhD
Andrew J.R. Simpson, PhD
Research Fellow, CVSSP, University of Surrey
Vahvistettu sähköpostiosoite verkkotunnuksessa surrey.ac.uk
Nimike
Viittaukset
Viittaukset
Vuosi
Deep karaoke: Extracting vocals from musical mixtures using a convolutional deep neural network
AJR Simpson, G Roma, MD Plumbley
Latent Variable Analysis and Signal Separation: 12th International …, 2015
1662015
Self-driving car steering angle prediction based on image recognition
S Du, H Guo, A Simpson
arXiv preprint arXiv:1912.05440, 2019
1052019
Two-stage single-channel audio source separation using deep neural networks
EM Grais, G Roma, AJR Simpson, MD Plumbley
IEEE/ACM Transactions on Audio, Speech, and Language Processing 25 (9), 1773 …, 2017
582017
Single channel audio source separation using deep neural network ensembles
EM Grais, G Roma, AJR Simpson, M Plumbley
AES Convention Proceedings, 2016
472016
The mathematics of mixing
M Terrell, A Simpson, M Sandler
Journal of the audio engineering society 62 (1/2), 4-13, 2014
372014
Probabilistic binary-mask cocktail-party source separation in a convolutional deep neural network
AJR Simpson
arXiv preprint arXiv:1503.06962, 2015
362015
Combining mask estimates for single channel audio source separation using deep neural networks
EM Grais, G Roma, AJR Simpson, M Plumbley
Interspeech2016 Proceedings, 2016
322016
Abstract learning via demodulation in a deep neural network
AJR Simpson
arXiv preprint arXiv:1502.04042, 2015
312015
Visual objects in the auditory system in sensory substitution: how much information do we need?
DJ Brown, AJR Simpson, MJ Proulx
Multisensory Research 27 (5-6), 337-357, 2014
282014
Over-sampling in a deep neural network
AJR Simpson
arXiv preprint arXiv:1502.03648, 2015
242015
Syncopation and the score
C Song, AJR Simpson, CA Harte, MT Pearce, MB Sandler
PLoS One 8 (9), e74692, 2013
222013
Discriminative enhancement for single channel audio source separation using deep neural networks
EM Grais, G Roma, AJR Simpson, MD Plumbley
international conference on latent variable analysis and signal separation …, 2017
202017
Selective adaptation to “oddball” sounds by the human auditory system
AJR Simpson, NS Harper, JD Reiss, D McAlpine
Journal of Neuroscience 34 (5), 1963-1969, 2014
202014
A practical step-by-step guide to the time-varying loudness model of Moore, Glasberg, and Baer (1997; 2002)
AJR Simpson, MJ Terrell, JD Reiss
Audio Engineering Society Convention 134, 2013
152013
Evaluation of audio source separation models using hypothesis-driven non-parametric statistical methods
AJR Simpson, G Roma, EM Grais, RD Mason, C Hummersone, A Liutkus, ...
2016 24th European Signal Processing Conference (EUSIPCO), 1763-1767, 2016
142016
Music remixing and upmixing using source separation
G Roma, EM Grais, AJR Simpson, MD Plumbley
Proceedings of the 2nd AES Workshop on Intelligent Music Production, 2016
122016
Dither is better than dropout for regularising deep neural networks
AJR Simpson
arXiv preprint arXiv:1508.04826, 2015
122015
Time-frequency trade-offs for audio source separation with binary masks
AJR Simpson
arXiv preprint arXiv:1504.07372, 2015
122015
The dynamic range paradox: a central auditory model of intensity change detection
AJR Simpson, JD Reiss
PLoS One 8 (2), e57497, 2013
122013
Untwist: A new toolbox for audio source separation
G Roma, EM Grais, A Simpson, I Sobieraj, MD Plumbley
Extended abstracts for the late-breaking demo session of the 17th …, 2016
112016
Järjestelmä ei voi suorittaa toimenpidettä nyt. Yritä myöhemmin uudelleen.
Artikkelit 1–20