Seuraa
Miao He
Miao He
Senior Research Scientist at Siemens Technology
Vahvistettu sähköpostiosoite verkkotunnuksessa siemens.com
Nimike
Viittaukset
Viittaukset
Vuosi
Deep learning based approach for bearing fault diagnosis
M He, D He
IEEE Transactions on Industry Applications 53 (3), 3057-3065, 2017
4992017
A new hybrid deep signal processing approach for bearing fault diagnosis using vibration signals
M He, D He
Neurocomputing 396, 542-555, 2020
1062020
Remaining useful life prediction of hybrid ceramic bearings using an integrated deep learning and particle filter approach
J Deutsch, M He, D He
Applied Sciences 7 (7), 649, 2017
1012017
Detection of pitting in gears using a deep sparse autoencoder
Y Qu, M He, J Deutsch, D He
Applied Sciences 7 (5), 515, 2017
692017
Fast evaluation of aircraft icing severity using machine learning based on XGBoost
S Li, J Qin, M He, R Paoli
Aerospace 7 (4), 36, 2020
572020
Power consumption estimation for mask image projection stereolithography additive manufacturing using machine learning based approach
Y Yang, M He, L Li
Journal of cleaner production 251, 119710, 2020
502020
Rolling bearing fault severity identification using deep sparse auto-encoder network with noise added sample expansion
R Chen, S Chen, M He, D He, B Tang
Proceedings of the Institution of Mechanical Engineers, Part O: Journal of …, 2017
402017
A new method to classify railway vehicle axle fatigue crack AE signal
Y Zhou, L Lin, D Wang, M He, D He
Applied Acoustics 131, 174-185, 2018
352018
Wind turbine planetary gearbox feature extraction and fault diagnosis using a deep-learning-based approach
M He, D He, J Yoon, TJ Nostrand, J Zhu, E Bechhoefer
Proceedings of the Institution of Mechanical Engineers, Part O: Journal of …, 2019
302019
Gear pitting fault diagnosis using disentangled features from unsupervised deep learning
Y Qu, Y Zhang, M He, D He, C Jiao, Z Zhou
Proceedings of the Institution of Mechanical Engineers, Part O: Journal of …, 2019
282019
Experimental study of dynamic strain for gear tooth using fiber Bragg gratings and piezoelectric strain sensors
Y Qu, L Hong, X Jiang, M He, D He, Y Tan, Z Zhou
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of …, 2018
232018
Using deep learning based approaches for bearing fault diagnosis with AE sensors
M He, D He, E Bechhoefer
Annual Conference of the PHM Society 8 (1), 2016
162016
A new machine learning based geometry feature extraction approach for energy consumption estimation in mask image projection stereolithography
Y Yang, M He, L Li
Procedia CIRP 80, 741-745, 2019
142019
A new signal processing and feature extraction approach for bearing fault diagnosis using AE sensors
M He, D He, Y Qu
Journal of Failure Analysis and Prevention 16, 821-827, 2016
112016
Simultaneous bearing fault diagnosis and severity detection using a LAMSTAR network‐based approach
M He, D He
IET Science, Measurement & Technology 12 (7), 893-901, 2018
72018
A natural language processing based planetary gearbox fault diagnosis with acoustic emission signals
D He, M He, J Yoon
2023 IEEE Aerospace Conference, 01-06, 2023
32023
Few-Shot Learning for Full Ceramic Bearing Fault Diagnosis with Acoustic Emission Signals
D He, M He, A Taffari
PHM Society Asia-Pacific Conference 4 (1), 2023
22023
A regularized deep clustering method for fault trend analysis
Y Qu, Y Zhang, D He, M He, Z Zhou
Annual Conference of the PHM Society 11 (1), 2019
22019
Few-shot Learning for Plastic Bearing Fault Diagnosis–An Integrated Image Processing and NLP Approach
D He, M He
Annual Conference of the PHM Society 15 (1), 2023
12023
Analysis of a Diesel Engine Exhaust Manifold
Y Yang, M He, M Mojtahed
ASME International Mechanical Engineering Congress and Exposition 46583 …, 2014
12014
Järjestelmä ei voi suorittaa toimenpidettä nyt. Yritä myöhemmin uudelleen.
Artikkelit 1–20