Seuraa
Leander Weber
Leander Weber
Vahvistettu sähköpostiosoite verkkotunnuksessa hhi.fraunhofer.de
Nimike
Viittaukset
Viittaukset
Vuosi
Quantus: An explainable ai toolkit for responsible evaluation of neural network explanations and beyond
A Hedström, L Weber, D Krakowczyk, D Bareeva, F Motzkus, W Samek, ...
Journal of Machine Learning Research 24 (34), 1-11, 2023
2402023
Finding and removing Clever Hans: Using explanation methods to debug and improve deep models
CJ Anders, L Weber, D Neumann, W Samek, KR Müller, S Lapuschkin
Information Fusion 77, 261-295, 2022
1382022
Beyond explaining: Opportunities and challenges of XAI-based model improvement
L Weber, S Lapuschkin, A Binder, W Samek
Information Fusion 92, 154-176, 2023
1202023
Understanding integrated gradients with smoothtaylor for deep neural network attribution
GSW Goh, S Lapuschkin, L Weber, W Samek, A Binder
2020 25th International Conference on Pattern Recognition (ICPR), 4949-4956, 2021
402021
Shortcomings of top-down randomization-based sanity checks for evaluations of deep neural network explanations
A Binder, L Weber, S Lapuschkin, G Montavon, KR Müller, W Samek
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2023
212023
Explain to not forget: Defending against catastrophic forgetting with xai
S Ede, S Baghdadlian, L Weber, A Nguyen, D Zanca, W Samek, ...
International Cross-Domain Conference for Machine Learning and Knowledge …, 2022
102022
Measurably stronger explanation reliability via model canonization
F Motzkus, L Weber, S Lapuschkin
2022 IEEE International Conference on Image Processing (ICIP), 516-520, 2022
92022
PatClArC: Using pattern concept activation vectors for noise-robust model debugging
F Pahde, L Weber, CJ Anders, W Samek, S Lapuschkin
arXiv preprint arXiv:2202.03482, 2022
92022
Sanity checks revisited: An exploration to repair the model parameter randomisation test
A Hedström, L Weber, S Lapuschkin, M Höhne
arXiv preprint arXiv:2401.06465, 2024
82024
Navigating Neural Space: Revisiting Concept Activation Vectors to Overcome Directional Divergence
F Pahde, M Dreyer, L Weber, M Weckbecker, CJ Anders, T Wiegand, ...
arXiv preprint arXiv:2202.03482, 2022
52022
A fresh look at sanity checks for saliency maps
A Hedström, L Weber, S Lapuschkin, M Höhne
World Conference on Explainable Artificial Intelligence, 403-420, 2024
42024
Towards a more refined training process for neural networks: Applying layer-wise relevance propagation to understand and improve classification performance on imbalanced datasets
L Weber
Technische Universität Berlin, 2020
42020
Layer-wise Feedback Propagation
L Weber, J Berend, A Binder, T Wiegand, W Samek, S Lapuschkin
arXiv preprint arXiv:2308.12053, 2023
12023
Supplement to: Shortcomings of Top-Down Randomization-Based Sanity Checks for Evaluations of Deep Neural Network Explanations
A Binder, L Weber, S Lapuschkin
Järjestelmä ei voi suorittaa toimenpidettä nyt. Yritä myöhemmin uudelleen.
Artikkelit 1–14