Seuraa
Yuzhen Peng
Yuzhen Peng
Bosch Research
Vahvistettu sähköpostiosoite verkkotunnuksessa bosch.com
Nimike
Viittaukset
Viittaukset
Vuosi
Using machine learning techniques for occupancy-prediction-based cooling control in office buildings
Y Peng, A Rysanek, Z Nagy, A Schlüter
Applied energy 211, 1343-1358, 2018
3652018
A critical review of field implementations of occupant-centric building controls
JY Park, MM Ouf, B Gunay, Y Peng, W O'Brien, MB Kjærgaard, Z Nagy
Building and Environment 165, 106351, 2019
2682019
Modeling occupant behavior in buildings
S Carlucci, M De Simone, SK Firth, MB Kjærgaard, R Markovic, ...
Building and Environment 174, 106768, 2020
2072020
A review of select human-building interfaces and their relationship to human behavior, energy use and occupant comfort
JK Day, C McIlvennie, C Brackley, M Tarantini, C Piselli, J Hahn, ...
Building and environment 178, 106920, 2020
1782020
Temperature-preference learning with neural networks for occupant-centric building indoor climate controls
Y Peng, Z Nagy, A Schlüter
Building and Environment 154, 296-308, 2019
1332019
Occupancy learning-based demand-driven cooling control for office spaces
Y Peng, A Rysanek, Z Nagy, A Schlüter
Building and Environment 122, 145-160, 2017
1272017
Hybrid system controls of natural ventilation and HVAC in mixed-mode buildings: A comprehensive review
Y Peng, Y Lei, ZD Tekler, N Antanuri, SK Lau, A Chong
Energy and Buildings 276, 112509, 2022
812022
A practical deep reinforcement learning framework for multivariate occupant-centric control in buildings
Y Lei, S Zhan, E Ono, Y Peng, Z Zhang, T Hasama, A Chong
Applied Energy 324, 119742, 2022
782022
Ten questions concerning occupant-centric control and operations
Z Nagy, B Gunay, C Miller, J Hahn, MM Ouf, S Lee, BW Hobson, ...
Building and Environment 242, 110518, 2023
512023
Comparing the indoor environmental quality of a displacement ventilation and passive chilled beam application to conventional air-conditioning in the Tropics
J Pantelic, A Rysanek, C Miller, Y Peng, E Teitelbaum, F Meggers, ...
Building and Environment 130, 128-142, 2018
372018
ROBOD, room-level occupancy and building operation dataset
ZD Tekler, E Ono, Y Peng, S Zhan, B Lasternas, A Chong
Building Simulation 15 (12), 2127-2137, 2022
342022
A hybrid active learning framework for personal thermal comfort models
ZD Tekler, Y Lei, Y Peng, C Miller, A Chong
Building and Environment 234, 110148, 2023
332023
Experimental assessment of thermal and acoustics interactions on occupant comfort in mixed-mode buildings
Y Peng, N Antanuri, SK Lau, B Jebelli, SK Jusuf, C Miller, YT Teo, ...
Building and Environment 238, 110342, 2023
152023
Case Study Review: Prediction Techniques in Intelligent HVAC Control Systems
Y Peng, A Rysanek, Z Nagy, A Schlueter
9th International Conference on Indoor Air Quality Ventilation and Energy …, 2016
142016
Learning-based demand-driven controls for energy-efficient buildings
Y Peng
ETH Zurich, 2019
32019
Indoor Environmental Quality assessment of mixed-mode ventilation with ceiling fans in the tropics
Y Lei, Y Peng, A Chong
E3S Web of Conferences 396, 01086, 2023
12023
Demand-driven building controls: A framework and lessons learnt
Y Peng, A Schlüter
Innovative Solutions for Energy Transitions: Part IV 5, 844, 2019
12019
Data-driven outdoor and indoor temperature prediction for energy-efficient building operation
Y Peng, A Schlüter
Innovative Solutions for Energy Transitions: Part III 4, 433, 2019
2019
Järjestelmä ei voi suorittaa toimenpidettä nyt. Yritä myöhemmin uudelleen.
Artikkelit 1–18