Seuraa
Hyoungseob Park
Hyoungseob Park
Ph.D student in Yale University
Vahvistettu sähköpostiosoite verkkotunnuksessa yale.edu
Nimike
Viittaukset
Viittaukset
Vuosi
Meta batch-instance normalization for generalizable person re-identification
S Choi, T Kim, M Jeong, H Park, C Kim
Proceedings of the IEEE/CVF conference on Computer Vision and Pattern …, 2021
1762021
Neural architecture search for spiking neural networks
Y Kim, Y Li, H Park, Y Venkatesha, P Panda
European conference on computer vision, 36-56, 2022
1152022
Neuromorphic data augmentation for training spiking neural networks
Y Li, Y Kim, H Park, T Geller, P Panda
European Conference on Computer Vision, 631-649, 2022
1102022
Robust federated learning with noisy labels
S Yang, H Park, J Byun, C Kim
IEEE Intelligent Systems 37 (2), 35-43, 2022
972022
Rate coding or direct coding: Which one is better for accurate, robust, and energy-efficient spiking neural networks?
Y Kim, H Park, A Moitra, A Bhattacharjee, Y Venkatesha, P Panda
ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and …, 2022
942022
Exploring lottery ticket hypothesis in spiking neural networks
Y Kim, Y Li, H Park, Y Venkatesha, R Yin, P Panda
European Conference on Computer Vision, 102-120, 2022
612022
Binding touch to everything: Learning unified multimodal tactile representations
F Yang, C Feng, Z Chen, H Park, D Wang, Y Dou, Z Zeng, X Chen, ...
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2024
422024
Exploring temporal information dynamics in spiking neural networks
Y Kim, Y Li, H Park, Y Venkatesha, A Hambitzer, P Panda
Proceedings of the AAAI Conference on Artificial Intelligence 37 (7), 8308-8316, 2023
352023
Wordepth: Variational language prior for monocular depth estimation
Z Zeng, D Wang, F Yang, H Park, S Soatto, D Lao, A Wong
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2024
212024
Efficient human activity recognition with spatio-temporal spiking neural networks
Y Li, R Yin, Y Kim, P Panda
Frontiers in Neuroscience 17, 1233037, 2023
212023
Test-time adaptation for depth completion
H Park, A Gupta, A Wong
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2024
142024
Uncovering the representation of spiking neural networks trained with surrogate gradient
Y Li, Y Kim, H Park, P Panda
arXiv preprint arXiv:2304.13098, 2023
122023
On the viability of monocular depth pre-training for semantic segmentation
D Lao, F Yang, D Wang, H Park, S Lu, A Wong, S Soatto
European Conference on Computer Vision, 340-357, 2024
112024
Neurobind: Towards unified multimodal representations for neural signals
F Yang, C Feng, D Wang, T Wang, Z Zeng, Z Xu, H Park, P Ji, H Zhao, Y Li, ...
arXiv preprint arXiv:2407.14020, 2024
72024
Augundo: Scaling up augmentations for monocular depth completion and estimation
Y Wu, TY Liu, H Park, S Soatto, D Lao, A Wong
European Conference on Computer Vision, 274-293, 2024
62024
Addressing client drift in federated continual learning with adaptive optimization
Y Venkatesha, Y Kim, H Park, Y Li, P Panda
Available at SSRN 4188586, 2022
62022
Augundo: Scaling up augmentations for unsupervised depth completion
Y Wu, TY Liu, H Park, S Soatto, D Lao, A Wong
52023
Divide-and-conquer the NAS puzzle in resource-constrained federated learning systems
Y Venkatesha, Y Kim, H Park, P Panda
Neural Networks 168, 569-579, 2023
42023
All-day depth completion
V Ezhov, H Park, Z Zhang, R Upadhyay, H Zhang, CC Chandrappa, ...
2024 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2024
32024
Rsa: Resolving scale ambiguities in monocular depth estimators through language descriptions
Z Zeng, Y Wu, H Park, D Wang, F Yang, S Soatto, D Lao, BW Hong, ...
arXiv preprint arXiv:2410.02924, 2024
32024
Järjestelmä ei voi suorittaa toimenpidettä nyt. Yritä myöhemmin uudelleen.
Artikkelit 1–20