Exascale deep learning for climate analytics T Kurth, S Treichler, J Romero, M Mudigonda, N Luehr, E Phillips, ... SC18: International conference for high performance computing, networking …, 2018 | 340 | 2018 |
AFiD-GPU: a versatile Navier–Stokes solver for wall-bounded turbulent flows on GPU clusters X Zhu, E Phillips, V Spandan, J Donners, G Ruetsch, J Romero, ... Computer physics communications 229, 199-210, 2018 | 102 | 2018 |
One-point statistics for turbulent pipe flow up to S Pirozzoli, J Romero, M Fatica, R Verzicco, P Orlandi Journal of fluid mechanics 926, A28, 2021 | 100 | 2021 |
GenSLMs: Genome-scale language models reveal SARS-CoV-2 evolutionary dynamics M Zvyagin, A Brace, K Hippe, Y Deng, B Zhang, CO Bohorquez, A Clyde, ... The International Journal of High Performance Computing Applications 37 (6 …, 2023 | 98 | 2023 |
# COVIDisAirborne: AI-enabled multiscale computational microscopy of delta SARS-CoV-2 in a respiratory aerosol A Dommer, L Casalino, F Kearns, M Rosenfeld, N Wauer, SH Ahn, ... The international journal of high performance computing applications 37 (1 …, 2023 | 80 | 2023 |
Highly-scalable, physics-informed GANs for learning solutions of stochastic PDEs L Yang, S Treichler, T Kurth, K Fischer, D Barajas-Solano, J Romero, ... 2019 IEEE/ACM Third Workshop on Deep Learning on Supercomputers (DLS), 1-11, 2019 | 56 | 2019 |
Verification and Validation of HiFiLES: a High-Order LES unstructured solver on multi-GPU platforms MR López, A Sheshadri, JR Bull, TD Economon, J Romero, JE Watkins, ... 32nd AIAA applied aerodynamics conference, 3168, 2014 | 55 | 2014 |
A simplified formulation of the flux reconstruction method J Romero, K Asthana, A Jameson Journal of Scientific Computing 67, 351-374, 2016 | 48 | 2016 |
FSEI-GPU: GPU accelerated simulations of the fluid–structure–electrophysiology interaction in the left heart F Viola, V Spandan, V Meschini, J Romero, M Fatica, MD de Tullio, ... Computer physics communications 273, 108248, 2022 | 39 | 2022 |
ZEFR: A GPU-accelerated high-order solver for compressible viscous flows using the flux reconstruction method J Romero, J Crabill, JE Watkins, FD Witherden, A Jameson Computer Physics Communications 250, 107169, 2020 | 36 | 2020 |
High performance implementations of the 2D Ising model on GPUs J Romero, M Bisson, M Fatica, M Bernaschi Computer Physics Communications 256, 107473, 2020 | 34 | 2020 |
Exascale deep learning for scientific inverse problems N Laanait, J Romero, J Yin, MT Young, S Treichler, V Starchenko, ... arXiv preprint arXiv:1909.11150, 2019 | 33 | 2019 |
DNS of passive scalars in turbulent pipe flow S Pirozzoli, J Romero, M Fatica, R Verzicco, P Orlandi Journal of Fluid Mechanics 940, A45, 2022 | 31 | 2022 |
A performance study of Quantum ESPRESSO’s PWscf code on multi-core and GPU systems J Romero, E Phillips, G Ruetsch, M Fatica, F Spiga, P Giannozzi High Performance Computing Systems. Performance Modeling, Benchmarking, and …, 2018 | 28 | 2018 |
Accelerating collective communication in data parallel training across deep learning frameworks J Romero, J Yin, N Laanait, B Xie, MT Young, S Treichler, V Starchenko, ... 19th USENIX Symposium on Networked Systems Design and Implementation (NSDI …, 2022 | 23 | 2022 |
Multi-GPU, implicit time stepping for high-order methods on unstructured grids JE Watkins, J Romero, A Jameson 46th AIAA Fluid Dynamics Conference, 3965, 2016 | 22 | 2016 |
A direct flux reconstruction scheme for advection–diffusion problems on triangular grids J Romero, FD Witherden, A Jameson Journal of Scientific Computing 73, 1115-1144, 2017 | 17 | 2017 |
Deepspeed4science initiative: Enabling large-scale scientific discovery through sophisticated ai system technologies SL Song, B Kruft, M Zhang, C Li, S Chen, C Zhang, M Tanaka, X Wu, ... arXiv preprint arXiv:2310.04610, 2023 | 12 | 2023 |
Extension of the flux reconstruction method to triangular elements using collapsed-edge quadrilaterals J Romero, A Jameson 54th AIAA Aerospace Sciences Meeting, 1825, 2016 | 12 | 2016 |
On the development of the direct flux reconstruction scheme for high-order fluid flow simulations JD Romero Stanford University, 2017 | 11 | 2017 |