Suivre
Hoang Duy Trinh
Hoang Duy Trinh
Exein
Adresse e-mail validée de exein.io - Page d'accueil
Titre
Citée par
Citée par
Année
Mobile traffic prediction from raw data using LSTM networks
HD Trinh, L Giupponi, P Dini
2018 IEEE 29th annual international symposium on personal, indoor and mobile …, 2018
2122018
Detecting Mobile Traffic Anomalies through Physical Control Channel Fingerprinting: a Deep Semi-supervised Approach
HD Trinh, E Zeydan, L Giupponi, P Dini
IEEE Access 7 (1), 152187-152201, 2019
702019
Analysis and modeling of mobile traffic using real traces
HD Trinh, N Bui, J Widmer, L Giupponi, P Dini
2017 IEEE 28th annual international symposium on personal, indoor, and …, 2017
542017
Urban Anomaly Detection by processing Mobile Traffic Traces with LSTM Neural Networks
HD Trinh, L Giupponi, P Dini
2019 IEEE International Conference on Sensing, Communication and Networking …, 2019
472019
Mobile Traffic Classification through Physical Control Channel Fingerprinting: a Deep Learning Approach
HD Trinh, AF Gambin, L Giupponi, M Rossi, P Dini
IEEE Transactions on Network and Service Management, 2020
342020
Wake-up scheduling for energy-efficient mobile devices
S Rostami, HD Trinh, S Lagen, M Costa, M Valkama, P Dini
IEEE Transactions on Wireless Communications 19 (9), 6020-6036, 2020
162020
Mobile Traffic Classification through Physical Control Channel Fingerprinting: a Deep Learning Approach
HD Trinh, AG Fernandez, L Giupponi, M Rossi, P Dini
arXiv, arXiv: 1910.11617, 2019
11*2019
Proactive wake-up scheduler based on recurrent neural networks
S Rostami, HD Trinh, S Lagen, M Costa, M Valkama, P Dini
ICC 2020-2020 IEEE International Conference on Communications (ICC), 1-6, 2020
62020
Engin Zeydan, and Lorenza Giupponi,“Detecting mobile traffic anomalies through physical control channel fingerprinting: A deep semi-supervised approach,”
HD Trinh
IEEE Access 7, 152187-152201, 2019
62019
Unveiling Radio Resource Utilization Dynamics of Mobile Traffic through Unsupervised Learning
A Rago, G Piro, HD Trinh, G Boggia, P Dini
TMA 2 (4), 2019
62019
Data analytics for mobile traffic in 5G networks using machine learning techniques
HD Trinh
Universitat Politècnica de Catalunya, 2020
52020
Engin Zeydan, L. Giupponi, and Paolo Dini.«Detecting Mobile Traffic Anomalies through Physical Control Channel Fingerprinting: a Deep Semi-supervised Approach»
HD Trinh
IEEE Access, 1-1, 0
2
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–12