Suivre
Sophie Fellenz née Burkhardt
Sophie Fellenz née Burkhardt
Junior Professor, TU Kaiserslautern
Adresse e-mail validée de cs.uni-kl.de
Titre
Citée par
Citée par
Année
Decoupling sparsity and smoothness in the dirichlet variational autoencoder topic model
S Burkhardt, S Kramer
Journal of Machine Learning Research 20 (131), 1-27, 2019
952019
Online multi-label dependency topic models for text classification
S Burkhardt, S Kramer
Machine Learning 107, 859-886, 2018
632018
Making thermodynamic models of mixtures predictive by machine learning: matrix completion of pair interactions
F Jirasek, R Bamler, S Fellenz, M Bortz, M Kloft, S Mandt, H Hasse
Chemical Science 13 (17), 4854-4862, 2022
232022
A survey of multi-label topic models
S Burkhardt, S Kramer
ACM SIGKDD Explorations Newsletter 21 (2), 61-79, 2019
222019
On the challenges and opportunities in generative ai
L Manduchi, K Pandey, R Bamler, R Cotterell, S Däubener, S Fellenz, ...
arXiv preprint arXiv:2403.00025, 2024
172024
Rule extraction from binary neural networks with convolutional rules for model validation
S Burkhardt, J Brugger, N Wagner, Z Ahmadi, K Kersting, S Kramer
Frontiers in artificial intelligence 4, 642263, 2021
132021
Towards identifying drug side effects from social media using active learning and crowd sourcing
S Burkhardt, J Siekiera, J Glodde, MA Andrade-Navarro, S Kramer
PACIFIC SYMPOSIUM ON BIOCOMPUTING 2020, 319-330, 2019
132019
Focusing knowledge-based graph argument mining via topic modeling
P Abels, Z Ahmadi, S Burkhardt, B Schiller, I Gurevych, S Kramer
arXiv preprint arXiv:2102.02086, 2021
122021
Multi-label classification using stacked hierarchical Dirichlet processes with reduced sampling complexity
S Burkhardt, S Kramer
Knowledge and Information Systems 59, 93-115, 2019
122019
Semisupervised bayesian active learning for text classification
S Burkhardt, J Siekiera, S Kramer
Bayesian Deep Learning Workshop at NeurIPS, 2018
122018
Deep anomaly detection on Tennessee Eastman process data
F Hartung, BJ Franks, T Michels, D Wagner, P Liznerski, S Reithermann, ...
Chemie Ingenieur Technik 95 (7), 1077-1082, 2023
92023
A call for standardization and validation of text style transfer evaluation
P Ostheimer, M Nagda, M Kloft, S Fellenz
arXiv preprint arXiv:2306.00539, 2023
92023
HANNA: hard-constraint neural network for consistent activity coefficient prediction
T Specht, M Nagda, S Fellenz, S Mandt, H Hasse, F Jirasek
Chemical Science 15 (47), 19777-19786, 2024
82024
On the spectrum between binary relevance and classifier chains in multi-label classification
S Burkhardt, S Kramer
Proceedings of the 30th Annual ACM Symposium on Applied Computing, 885-892, 2015
72015
Text style transfer evaluation using large language models
P Ostheimer, M Nagda, M Kloft, S Fellenz
arXiv preprint arXiv:2308.13577, 2023
62023
Topic-guided knowledge graph construction for argument mining
W Li, P Abels, Z Ahmadi, S Burkhardt, B Schiller, I Gurevych, S Kramer
2021 IEEE International Conference on Big Knowledge (ICBK), 315-322, 2021
62021
Online Sparse Collapsed Hybrid Variational-Gibbs Algorithm for Hierarchical Dirichlet Process Topic Models
S Burkhardt, S Kramer
ECML PKDD, 2017
52017
Reimagining Anomalies: What If Anomalies Were Normal?
P Liznerski, S Varshneya, E Calikus, S Fellenz, M Kloft
arXiv preprint arXiv:2402.14469, 2024
42024
Discriminative machine learning for maximal representative subsampling
T Hauptmann, S Fellenz, L Nathan, O Tüscher, S Kramer
Scientific reports 13 (1), 20925, 2023
22023
Ordinal regression for difficulty prediction of StepMania levels
BJ Franks, B Dinkelmann, M Kloft, S Fellenz
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2023
22023
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20