Suivre
Siliang Zeng
Titre
Citée par
Citée par
Année
A near-optimal algorithm for stochastic bilevel optimization via double-momentum
P Khanduri, S Zeng, M Hong, HT Wai, Z Wang, Z Yang
Advances in neural information processing systems 34, 30271-30283, 2021
1442021
Maximum-likelihood inverse reinforcement learning with finite-time guarantees
S Zeng, C Li, A Garcia, M Hong
Advances in Neural Information Processing Systems 35, 10122-10135, 2022
382022
A stochastic linearized augmented lagrangian method for decentralized bilevel optimization
S Lu, S Zeng, X Cui, M Squillante, L Horesh, B Kingsbury, J Liu, M Hong
Advances in Neural Information Processing Systems 35, 30638-30650, 2022
172022
Learning to Coordinate in Multi-Agent Systems: A Coordinated Actor-Critic Algorithm and Finite-Time Guarantees
S Zeng, T Chen, A Garcia, M Hong
4th Annual Learning for Dynamics & Control Conference (L4DC 2022), 2021
152021
When demonstrations meet generative world models: A maximum likelihood framework for offline inverse reinforcement learning
S Zeng, C Li, A Garcia, M Hong
Advances in Neural Information Processing Systems 36, 65531-65565, 2023
142023
On the divergence of decentralized nonconvex optimization
M Hong, S Zeng, J Zhang, H Sun
SIAM Journal on Optimization 32 (4), 2879-2908, 2022
132022
A momentum-assisted single-timescale stochastic approximation algorithm for bilevel optimization
P Khanduri, S Zeng, M Hong, HT Wai, Z Wang, Z Yang
arXiv preprint arXiv:2102.07367, 2021
132021
Multi-Agent Reinforcement Learning for Adaptive Routing: A Hybrid Method using Eligibility Traces
S Zeng, X Xu, Y Chen
2020 IEEE 16th International Conference on Control & Automation (ICCA), 1332 …, 2020
132020
Getting more juice out of the sft data: Reward learning from human demonstration improves sft for llm alignment
J Li, S Zeng, HT Wai, C Li, A Garcia, M Hong
Advances in Neural Information Processing Systems 37, 124292-124318, 2025
122025
Structural estimation of markov decision processes in high-dimensional state space with finite-time guarantees
S Zeng, M Hong, A Garcia
Operations Research, 2024
102024
A bayesian approach to robust inverse reinforcement learning
R Wei, S Zeng, C Li, A Garcia, AD McDonald, M Hong
Conference on Robot Learning, 2304-2322, 2023
8*2023
Joint Reward and Policy Learning with Demonstrations and Human Feedback Improves Alignment
C Li, S Zeng, Z Liao, J Li, D Kang, A Garcia, M Hong
The Thirteenth International Conference on Learning Representations, 2025
3*2025
Network-Level System Performance Prediction Using Deep Neural Networks with Cross-Layer Information
Q Cao, S Zeng, MO Pun, Y Chen
ICC 2020-2020 IEEE International Conference on Communications (ICC), 1-6, 2020
22020
Bilevel decentralized multi-agent learning
S Zeng, S Lu, X Cui, MS Squillante, L Horesh, BED Kingsbury, M Hong
US Patent App. 18/217,081, 2025
2025
From Demonstrations to Rewards: Alignment Without Explicit Human Preferences
S Zeng, Y Liu, H Rangwala, G Karypis, M Hong, R Fakoor
2025
Understanding Inverse Reinforcement Learning under Overparameterization: Non-Asymptotic Analysis and Global Optimality
R Zhang, S Zeng, C Li, A Garcia, M Hong
The 28th International Conference on Artificial Intelligence and Statistics, 2025
2025
Bridging the Training-Inference Gap in LLMs by Leveraging Self-Generated Tokens
Z Cen, Y Liu, S Zeng, P Chaudhari, H Rangwala, G Karypis, R Fakoor
arXiv preprint arXiv:2410.14655, 2024
2024
LLM Alignment Through Successive Policy Re-weighting (SPR)
X Zhang, S Zeng, J Li, K Lin, M Hong
NeurIPS 2024 Workshop on Fine-Tuning in Modern Machine Learning: Principles …, 2024
2024
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–18