Suivre
Daniel Klotz
Daniel Klotz
IT:U; Google
Adresse e-mail validée de it-u.at
Titre
Citée par
Citée par
Année
Rainfall–runoff modelling using long short-term memory (LSTM) networks
F Kratzert, D Klotz, C Brenner, K Schulz, M Herrnegger
Hydrology and Earth System Sciences 22 (11), 6005-6022, 2018
13422018
Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets
F Kratzert, D Klotz, G Shalev, G Klambauer, S Hochreiter, G Nearing
Hydrology and Earth System Sciences 23 (12), 5089-5110, 2019
675*2019
Toward improved predictions in ungauged basins: Exploiting the power of machine learning
F Kratzert, D Klotz, M Herrnegger, AK Sampson, S Hochreiter, GS Nearing
Water Resources Research 55 (12), 11344-11354, 2019
5492019
What role does hydrological science play in the age of machine learning?
GS Nearing, F Kratzert, AK Sampson, CS Pelissier, D Klotz, JM Frame, ...
Water Resources Research 57 (3), e2020WR028091, 2021
4662021
Rainfall–runoff prediction at multiple timescales with a single Long Short-Term Memory network
M Gauch, F Kratzert, D Klotz, G Nearing, J Lin, S Hochreiter
Hydrology and Earth System Sciences 25 (4), 2045-2062, 2021
2082021
Deep learning rainfall-runoff predictions of extreme events
J Frame, F Kratzert, D Klotz, M Gauch, G Shelev, O Gilon, LM Qualls, ...
(No Title), 2021
1852021
Uncertainty estimation with deep learning for rainfall–runoff modelling
D Klotz, F Kratzert, M Gauch, A Keefe Sampson, J Brandstetter, ...
Hydrology and Earth System Sciences Discussions 2021, 1-32, 2021
1312021
NeuralHydrology–interpreting LSTMs in hydrology
F Kratzert, M Herrnegger, D Klotz, S Hochreiter, G Klambauer
Explainable AI: Interpreting, explaining and visualizing deep learning, 347-362, 2019
1292019
Hydrological concept formation inside long short-term memory (LSTM) networks
T Lees, S Reece, F Kratzert, D Klotz, M Gauch, J De Bruijn, R Kumar Sahu, ...
Hydrology and Earth System Sciences Discussions 2021, 1-37, 2021
1072021
Caravan-A global community dataset for large-sample hydrology
F Kratzert, G Nearing, N Addor, T Erickson, M Gauch, O Gilon, ...
Scientific Data 10 (1), 61, 2023
1052023
Mc-lstm: Mass-conserving lstm
PJ Hoedt, F Kratzert, D Klotz, C Halmich, M Holzleitner, GS Nearing, ...
International conference on machine learning, 4275-4286, 2021
942021
A note on leveraging synergy in multiple meteorological data sets with deep learning for rainfall–runoff modeling
F Kratzert, D Klotz, S Hochreiter, GS Nearing
Hydrology and Earth System Sciences 25 (5), 2685-2703, 2021
892021
Global prediction of extreme floods in ungauged watersheds
G Nearing, D Cohen, V Dube, M Gauch, O Gilon, S Harrigan, A Hassidim, ...
Nature 627 (8004), 559-563, 2024
83*2024
The great lakes runoff intercomparison project phase 4: the great lakes (GRIP-GL)
J Mai, H Shen, BA Tolson, É Gaborit, R Arsenault, JR Craig, V Fortin, ...
Hydrology and Earth System Sciences 26 (13), 3537-3572, 2022
682022
NeuralHydrology---A Python library for Deep Learning research in hydrology
F Kratzert, M Gauch, G Nearing, D Klotz
Journal of Open Source Software 7 (71), 4050, 2022
622022
HESS Opinions: Never train an LSTM on a single basin
F Kratzert, M Gauch, D Klotz, G Nearing
Hydrology and Earth system sciences discussions 2024, 1-19, 2024
50*2024
Data assimilation and autoregression for using near-real-time streamflow observations in long short-term memory networks
GS Nearing, D Klotz, AK Sampson, F Kratzert, M Gauch, JM Frame, ...
Hydrology and earth system sciences discussions 2021, 1-25, 2021
392021
Symbolic regression for the estimation of transfer functions of hydrological models
D Klotz, M Herrnegger, K Schulz
Water Resources Research 53 (11), 9402-9423, 2017
322017
Function space optimization: A symbolic regression method for estimating parameter transfer functions for hydrological models
M Feigl, M Herrnegger, D Klotz, K Schulz
Water resources research 56 (10), e2020WR027385, 2020
282020
Conformal prediction for time series with modern hopfield networks
A Auer, M Gauch, D Klotz, S Hochreiter
Advances in Neural Information Processing Systems 36, 56027-56074, 2023
262023
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20