Suivre
Andrea Fantasia
Andrea Fantasia
Ph.D. Student in Materials Science and Nanotechnology, University of Milano-Bicocca
Adresse e-mail validée de campus.unimib.it
Titre
Citée par
Citée par
Année
Accelerating simulations of strained-film growth by deep learning: Finite element method accuracy over long time scales
D Lanzoni, F Rovaris, L Martín-Encinar, A Fantasia, R Bergamaschini, ...
APL Machine Learning 2 (3), 2024
22024
Development of a machine learning interatomic potential for exploring pressure-dependent kinetics of phase transitions in germanium
A Fantasia, F Rovaris, O Abou El Kheir, A Marzegalli, D Lanzoni, ...
The Journal of Chemical Physics 161 (1), 2024
22024
Quantitative analysis of the prediction performance of a Convolutional Neural Network evaluating the surface elastic energy of a strained film
L Martín Encinar, D Lanzoni, A Fantasia, F Rovaris, R Bergamaschini, ...
arXiv e-prints, arXiv: 2405.03049, 2024
22024
Extreme time extrapolation capabilities and thermodynamic consistency of physics-inspired neural networks for the 3D microstructure evolution of materials via Cahn–Hilliard flow
D Lanzoni, A Fantasia, R Bergamaschini, O Pierre-Louis, F Montalenti
Machine Learning: Science and Technology 5 (4), 045017, 2024
2024
Quantitative analysis of the prediction performance of a Convolutional Neural Network evaluating the surface elastic energy of a strained film
LM Encinar, D Lanzoni, A Fantasia, F Rovaris, R Bergamaschini, ...
arXiv preprint arXiv:2405.03049, 2024
2024
Accelerating Crystal Growth Simulations by Convolutional Neural Networks
D Lanzoni, L Martín-Encinar, F Rovaris, A Fantasia, F Montalenti, ...
Abstract book of IWMCG11, 2024
2024
Simulating morphological evolutions by Convolutional Neural Networks
D Lanzoni, F Rovaris, A Fantasia, L Martı́n-Encinar, F Montalenti, ...
Abstract book of A3M Workshop, 2024
2024
Unravelling Atomistic Mechanisms of Pressure-Induced Phase Transitions in Silicon Nanoindentation
F Rovaris, A Marzegalli, D Lanzoni, A Fantasia, G Guojia, F Montalenti, ...
Abstract Book, 2024
2024
Convolutional Recurrent Neural Networks for tackling materials dynamics at the mesoscale
D Lanzoni, R Bergamaschini, A Fantasia, F Montalenti
Abstract book of" Multiscale Materials Modeling-MMM11", 2024
2024
Simulations of strained films evolution: extending accessible timescales through Convolutional Neural Networks
D Lanzoni, F Rovaris, L Martín-Encinar, A Fantasia, R Bergamaschini, ...
Abstract book of ECOSS-37, 2024
2024
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–10