Suivre
Koichiro Yasaka
Koichiro Yasaka
Adresse e-mail validée de g.ecc.u-tokyo.ac.jp
Titre
Citée par
Citée par
Année
Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: a preliminary study
K Yasaka, H Akai, O Abe, S Kiryu
Radiology 286 (3), 887-896, 2018
6442018
Deep learning with convolutional neural network in radiology
K Yasaka, H Akai, A Kunimatsu, S Kiryu, O Abe
Japanese journal of radiology 36, 257-272, 2018
3932018
Model-based iterative reconstruction technique for radiation dose reduction in chest CT: comparison with the adaptive statistical iterative reconstruction technique
M Katsura, I Matsuda, M Akahane, J Sato, H Akai, K Yasaka, A Kunimatsu, ...
European radiology 22, 1613-1623, 2012
3342012
Deep learning and artificial intelligence in radiology: Current applications and future directions
K Yasaka, O Abe
PLoS medicine 15 (11), e1002707, 2018
2302018
Liver fibrosis: deep convolutional neural network for staging by using gadoxetic acid–enhanced hepatobiliary phase MR images
K Yasaka, H Akai, A Kunimatsu, O Abe, S Kiryu
Radiology 287 (1), 146-155, 2018
2072018
Model-based iterative reconstruction technique for ultralow-dose chest CT: comparison of pulmonary nodule detectability with the adaptive statistical iterative reconstruction …
M Katsura, I Matsuda, M Akahane, K Yasaka, S Hanaoka, H Akai, J Sato, ...
Investigative radiology 48 (4), 206-212, 2013
1692013
MRI findings in posttraumatic stress disorder
A Kunimatsu, K Yasaka, H Akai, N Kunimatsu, O Abe
Journal of Magnetic Resonance Imaging 52 (2), 380-396, 2020
1642020
Prediction of bone mineral density from computed tomography: application of deep learning with a convolutional neural network
K Yasaka, H Akai, A Kunimatsu, S Kiryu, O Abe
European radiology 30, 3549-3557, 2020
1262020
Deep learning for staging liver fibrosis on CT: a pilot study
K Yasaka, H Akai, A Kunimatsu, O Abe, S Kiryu
European radiology 28, 4578-4585, 2018
1242018
Predicting prognosis of resected hepatocellular carcinoma by radiomics analysis with random survival forest
H Akai, K Yasaka, A Kunimatsu, M Nojima, T Kokudo, N Kokudo, ...
Diagnostic and interventional imaging 99 (10), 643-651, 2018
922018
Model-based iterative reconstruction for reduction of radiation dose in abdominopelvic CT: comparison to adaptive statistical iterative reconstruction
K Yasaka, M Katsura, M Akahane, J Sato, I Matsuda, K Ohtomo
Springerplus 2, 1-9, 2013
912013
Deep learning to differentiate parkinsonian disorders separately using single midsagittal MR imaging: a proof of concept study
S Kiryu, K Yasaka, H Akai, Y Nakata, Y Sugomori, S Hara, M Seo, O Abe, ...
European radiology 29, 6891-6899, 2019
682019
Precision of quantitative computed tomography texture analysis using image filtering: a phantom study for scanner variability
K Yasaka, H Akai, D Mackin, E Moros, K Ohtomo, S Kiryu
Medicine 96 (21), e6993, 2017
632017
Comparison of pure and hybrid iterative reconstruction techniques with conventional filtered back projection: image quality assessment in the cervicothoracic region
M Katsura, J Sato, M Akahane, I Matsuda, M Ishida, K Yasaka, ...
European journal of radiology 82 (2), 356-360, 2013
572013
Machine learning-based texture analysis of contrast-enhanced MR imaging to differentiate between glioblastoma and primary central nervous system lymphoma
A Kunimatsu, N Kunimatsu, K Yasaka, H Akai, K Kamiya, T Watadani, ...
Magnetic Resonance in Medical Sciences 18 (1), 44-52, 2019
542019
Imaging prediction of nonalcoholic steatohepatitis using computed tomography texture analysis
S Naganawa, K Enooku, R Tateishi, H Akai, K Yasaka, J Shibahara, ...
European radiology 28, 3050-3058, 2018
522018
The feasibility of Forward-projected model-based Iterative Reconstruction SoluTion (FIRST) for coronary 320-row computed tomography angiography: a pilot study
E Maeda, N Tomizawa, S Kanno, K Yasaka, T Kubo, K Ino, R Torigoe, ...
Journal of cardiovascular computed tomography 11 (1), 40-45, 2017
512017
Impact of hepatocellular carcinoma heterogeneity on computed tomography as a prognostic indicator
S Kiryu, H Akai, M Nojima, K Hasegawa, H Shinkawa, N Kokudo, ...
Scientific reports 7 (1), 12689, 2017
492017
Clinical impact of deep learning reconstruction in MRI
S Kiryu, H Akai, K Yasaka, T Tajima, A Kunimatsu, N Yoshioka, ...
Radiographics 43 (6), e220133, 2023
462023
Quantitative computed tomography texture analysis for estimating histological subtypes of thymic epithelial tumors
K Yasaka, H Akai, M Nojima, A Shinozaki-Ushiku, M Fukayama, ...
European Journal of Radiology 92, 84-92, 2017
462017
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20