Suivre
Jiaxi Ying
Titre
Citée par
Citée par
Année
A unified framework for structured graph learning via spectral constraints
S Kumar, J Ying, JVM Cardoso, DP Palomar
Journal of Machine Learning Research 21 (22), 1-60, 2020
1342020
Hankel Matrix Nuclear Norm Regularized Tensor Completion for -dimensional Exponential Signals
J Ying, H Lu, Q Wei, JF Cai, D Guo, J Wu, Z Chen, X Qu
IEEE Transactions on Signal Processing 65 (14), 3702-3717, 2017
1172017
Vandermonde factorization of Hankel matrix for complex exponential signal recovery—Application in fast NMR spectroscopy
J Ying, JF Cai, D Guo, G Tang, Z Chen, X Qu
IEEE Transactions on Signal Processing 66 (21), 5520-5533, 2018
862018
Structured graph learning via Laplacian spectral constraints
S Kumar, J Ying, JV de Miranda Cardoso, D Palomar
Advances in neural information processing systems 32, 2019
752019
Nonconvex sparse graph learning under Laplacian constrained graphical model
J Ying, JVM Cardoso, DP Palomar
Advances in Neural Information Processing Systems 33, 7101-7113, 2020
642020
Multi-contrast brain MRI image super-resolution with gradient-guided edge enhancement
H Zheng, K Zeng, D Guo, J Ying, Y Yang, X Peng, F Huang, Z Chen, X Qu
IEEE access 6, 57856-57867, 2018
572018
Low rank enhanced matrix recovery of hybrid time and frequency data in fast magnetic resonance spectroscopy
H Lu, X Zhang, T Qiu, J Yang, J Ying, D Guo, Z Chen, X Qu
IEEE Transactions on Biomedical Engineering 65 (4), 809-820, 2017
382017
Graphical models in heavy-tailed markets
JV de Miranda Cardoso, J Ying, D Palomar
Advances in Neural Information Processing Systems 34, 19989-20001, 2021
322021
Minimax estimation of Laplacian constrained precision matrices
J Ying, JV de Miranda Cardoso, D Palomar
International Conference on Artificial Intelligence and Statistics, 3736-3744, 2021
282021
Does the -norm Learn a Sparse Graph under Laplacian Constrained Graphical Models?
J Ying, JVM Cardoso, DP Palomar
arXiv preprint arXiv:2006.14925, 2020
24*2020
Algorithms for learning graphs in financial markets
JVM Cardoso, J Ying, DP Palomar
arXiv preprint arXiv:2012.15410, 2020
172020
Covariance matrix estimation under low-rank factor model with nonnegative correlations
R Zhou, J Ying, DP Palomar
IEEE Transactions on Signal Processing 70, 4020-4030, 2022
142022
Learning bipartite graphs: Heavy tails and multiple components
JV de Miranda Cardoso, J Ying, D Palomar
Advances in Neural Information Processing Systems 35, 14044-14057, 2022
122022
High-fidelity spectroscopy reconstruction in accelerated NMR
X Qu, T Qiu, D Guo, H Lu, J Ying, M Shen, B Hu, V Orekhov, Z Chen
Chemical communications 54 (78), 10958-10961, 2018
112018
Tensor-based information monitoring receiver in UAV-aided MIMO communication systems
X Han, X Zhao, J Ying, F Gao
IEEE Wireless Communications Letters 11 (1), 155-159, 2021
82021
Adaptive Estimation of Graphical Models under Total Positivity
J Ying, JVDM Cardoso, DP Palomar
International Conference on Machine Learning, 40054-40074, 2023
7*2023
Semi-blind receivers for UAV M-KRST coding MIMO systems based on nested tensor models
X Han, Y Zhao, J Ying
IEEE Wireless Communications Letters 10 (1), 185-188, 2020
72020
Fast Projected Newton-like Method for Precision Matrix Estimation under Total Positivity
JF Cai, JVDM Cardoso, DP Palomar, J Ying
Thirty-seventh Conference on Neural Information Processing Systems, 2023
6*2023
A Fast Algorithm for Graph Learning under Attractive Gaussian Markov Random Fields
J Ying, JVM Cardoso, DP Palomar
2021 55th Asilomar Conference on Signals, Systems, and Computers, 1520-1524, 2021
62021
Polynomial Graphical Lasso: Learning Edges from Gaussian Graph-Stationary Signals
A Buciulea, J Ying, AG Marques, DP Palomar
arXiv preprint arXiv:2404.02621, 2024
52024
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20