Rethinking Graph Backdoor Attacks: A Distribution-Preserving Perspective Z Zhang, M Lin, E Dai, S Wang KDD 2024, 2024 | 12 | 2024 |
Fairness-aware message passing for graph neural networks H Zhu, G Fu, Z Guo, Z Zhang, T Xiao, S Wang arXiv preprint arXiv:2306.11132, 2023 | 10 | 2023 |
Robustness-Inspired Defense Against Backdoor Attacks on Graph Neural Networks Z Zhang, M Lin, J Xu, Z Wu, E Dai, S Wang ICLR 2025, 2024 | 7 | 2024 |
Efficient Contrastive Learning for Fast and Accurate Inference on Graphs T Xiao, H Zhu, Z Zhang, Z Guo, CC Aggarwal, S Wang, VG Honavar ICML 2024, 2024 | 6* | 2024 |
Foundations and recent trends in multimodal mobile agents: A survey B Wu, Y Li, M Fang, Z Song, Z Zhang, Y Wei, L Chen arXiv preprint arXiv:2411.02006, 2024 | 3 | 2024 |
A comprehensive survey of small language models in the era of large language models: Techniques, enhancements, applications, collaboration with llms, and trustworthiness F Wang, Z Zhang, X Zhang, Z Wu, T Mo, Q Lu, W Wang, R Li, J Xu, X Tang, ... arXiv preprint arXiv:2411.03350, 2024 | 3 | 2024 |
Rule-based data selection for large language models X Li, M Gao, Z Zhang, C Yue, H Hu arXiv preprint arXiv:2410.04715, 2024 | 2 | 2024 |
Overcoming Pitfalls in Graph Contrastive Learning Evaluation: Toward Comprehensive Benchmarks Q Ma, H Chi, H Zhang, K Liu, Z Zhang, L Cheng, S Wang, PS Yu, Y Ma arXiv preprint arXiv:2402.15680, 2024 | 2 | 2024 |
Trojan Prompt Attacks on Graph Neural Networks M Lin*, Z Zhang*, E Dai, Z Wu, Y Wang, X Zhang, S Wang arXiv preprint arXiv:2410.13974, 2024 | 1 | 2024 |
Catastrophic Failure of LLM Unlearning via Quantization Z Zhang, F Wang, X Li, Z Wu, X Tang, H Liu, Q He, W Yin, S Wang ICLR 2025, 2024 | 1* | 2024 |
Data-adaptive Safety Rules for Training Reward Models X Li, M Gao, Z Zhang, J Fan, W Li arXiv preprint arXiv:2501.15453, 2025 | | 2025 |