Suivre
Alicia Curth
Alicia Curth
Microsoft Research Cambridge
Adresse e-mail validée de microsoft.com - Page d'accueil
Titre
Citée par
Citée par
Année
Nonparametric estimation of heterogeneous treatment effects: From theory to learning algorithms
A Curth, M Van der Schaar
International Conference on Artificial Intelligence and Statistics, 1810-1818, 2021
1662021
Causal machine learning for predicting treatment outcomes
S Feuerriegel, D Frauen, V Melnychuk, J Schweisthal, K Hess, A Curth, ...
Nature Medicine 30 (4), 958-968, 2024
892024
On Inductive Biases for Heterogeneous Treatment Effect Estimation
A Curth, M van der Schaar
Proceedings of the 35th Conference on Neural Information Processing Systems …, 2021
812021
Really Doing Great at Estimating CATE? A Critical Look at ML Benchmarking Practices in Treatment Effect Estimation
A Curth, D Svensson, J Weatherall, M van der Schaar
Proceedings of the Neural Information Processing Systems Track on Datasets …, 2021
802021
Hyperimpute: Generalized iterative imputation with automatic model selection
D Jarrett, BC Cebere, T Liu, A Curth, M van der Schaar
International Conference on Machine Learning, 9916-9937, 2022
752022
Machine learning for clinical trials in the era of COVID-19
WR Zame, I Bica, C Shen, A Curth, HS Lee, S Bailey, M van der Schaar
Statistics in Biopharmaceutical Research 12 (4), 506-517, 2020
752020
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data
A Curth*, C Lee*, M van der Schaar
Proceedings of the 35th Conference on Neural Information Processing Systems …, 2021
422021
In Search of Insights, Not Magic Bullets: Towards Demystification of the Model Selection Dilemma in Heterogeneous Treatment Effect Estimation
A Curth, M van der Schaar
International Conference on Machine Learning (ICML) 2023, 2023
332023
Combining observational and randomized data for estimating heterogeneous treatment effects
T Hatt, J Berrevoets, A Curth, S Feuerriegel, M van der Schaar
arXiv preprint arXiv:2202.12891, 2022
302022
Transferring clinical prediction models across hospitals and electronic health record systems
A Curth, P Thoral, W van den Wildenberg, P Bijlstra, D de Bruin, P Elbers, ...
Machine Learning and Knowledge Discovery in Databases: International …, 2020
282020
A U-turn on Double Descent: Rethinking Parameter Counting in Statistical Learning
A Curth*, A Jeffares*, M van der Schaar
Proceedings of the 37th Conference on Neural Information Processing Systems …, 2023
242023
Estimating Structural Target Functions using Machine Learning and Influence Functions
A Curth, AM Alaa, M van der Schaar
MSc Dissertation, University of Oxford, 2020
24*2020
Benchmarking Heterogeneous Treatment Effect Models through the Lens of Interpretability
J Crabbé*, A Curth*, I Bica*, M van der Schaar
Proceedings of the Neural Information Processing Systems Track on Datasets …, 2022
202022
Using machine learning to individualize treatment effect estimation: Challenges and opportunities
A Curth, RW Peck, E McKinney, J Weatherall, M van Der Schaar
Clinical Pharmacology & Therapeutics 115 (4), 710-719, 2024
192024
Accounting For Informative Sampling When Learning to Forecast Treatment Outcomes Over Time
T Vanderschueren*, A Curth*, W Verbeke, M van der Schaar
International Conference on Machine Learning (ICML) 2023, 2023
192023
Estimating multi-cause treatment effects via single-cause perturbation
Z Qian, A Curth, M van der Schaar
Advances in Neural Information Processing Systems 34, 23754-23767, 2021
182021
Disentangled counterfactual recurrent networks for treatment effect inference over time
J Berrevoets, A Curth, I Bica, E McKinney, M van der Schaar
arXiv preprint arXiv:2112.03811, 2021
152021
Why do random forests work? Understanding tree ensembles as self-regularizing adaptive smoothers
A Curth, A Jeffares, M van der Schaar
arXiv preprint arXiv:2402.01502, 2024
102024
A neural framework for generalized causal sensitivity analysis
D Frauen, F Imrie, A Curth, V Melnychuk, S Feuerriegel, M van der Schaar
arXiv preprint arXiv:2311.16026, 2023
92023
Doing Great at Estimating CATE? On the Neglected Assumptions in Benchmark Comparisons of Treatment Effect Estimators
A Curth, M van der Schaar
Workshop on the Neglected Assumptions in Causal Inference, ICML 2021, 2021
82021
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20