Mathematical foundations of infinite-dimensional statistical models E Giné, R Nickl Cambridge University Press, 2016 | 958* | 2016 |
Confidence bands in density estimation E Giné, R Nickl Annals of Statistics 38 (2), 1122-1170, 2010 | 209 | 2010 |
Nonparametric Bernstein-von Mises Theorems in Gaussian White Noise I Castillo, R Nickl The Annals of Statistics 41 1999-2028, 2013 | 167 | 2013 |
On the Bernstein–von Mises phenomenon for nonparametric Bayes procedures I Castillo, R Nickl Annals of Statistics 42 (5), 1941-1969, 2014 | 152 | 2014 |
Confidence sets in sparse regression R Nickl, S Van De Geer Annals of Statistics 41 (6), 2852-2876, 2013 | 130 | 2013 |
Rates of contraction for posterior distributions in Lr-metrics, 1≤ r≤∞ E Giné, R Nickl The Annals of Statistics 39 (6), 2883-2911, 2011 | 112 | 2011 |
Bracketing metric entropy rates and empirical central limit theorems for function classes of Besov-and Sobolev-type R Nickl, BM Pötscher Journal of Theoretical Probability 20, 177-199, 2007 | 111 | 2007 |
Global uniform risk bounds for wavelet deconvolution estimators K Lounici, R Nickl Annals of Statistics 39 (1), 201-231, 2011 | 99 | 2011 |
On adaptive inference and confidence bands M Hoffmann, R Nickl Annals of Statistics 39 (5), 2383-2409, 2011 | 96 | 2011 |
A simple adaptive estimator of the integrated square of a density E Giné, R Nickl Bernoulli 14 (1), 47-61, 2008 | 88 | 2008 |
Uniform limit theorems for wavelet density estimators E Giné, R Nickl Annals of Probability 37 (4), 1605-1646, 2009 | 87 | 2009 |
Nonparametric Bayesian posterior contraction rates for discretely observed scalar diffusions R Nickl, J Söhl Annals of Statistics 45 (4), 1664-1693, 2017 | 83 | 2017 |
Uniform central limit theorems for kernel density estimators E Giné, R Nickl Probability Theory and Related Fields 141 (3), 333-387, 2008 | 83 | 2008 |
Bernstein-von Mises theorems for statistical inverse problems I: Schrödinger equation R Nickl Journal of the European Mathematical Society 22 (8), 2697–2750, 2020 | 79 | 2020 |
Consistency of Bayesian inference with Gaussian process priors in an elliptic inverse problem M Giordano, R Nickl Inverse Problems 36 (8), 085001, 2020 | 78 | 2020 |
Consistent Inversion of Noisy Non‐Abelian X‐Ray Transforms F Monard, R Nickl, GP Paternain Communications on Pure and Applied Mathematics 74 (5), 1045-1099, 2021 | 74 | 2021 |
An exponential inequality for the distribution function of the kernel density estimator, with applications to adaptive estimation E Giné, R Nickl Probability Theory and Related Fields 143 (3), 569-596, 2009 | 74 | 2009 |
Convergence rates for penalized least squares estimators in PDE constrained regression problems R Nickl, S van de Geer, S Wang SIAM/ASA Journal on Uncertainty Quantification 8 (1), 374-413, 2020 | 72 | 2020 |
Efficient nonparametric Bayesian inference for X-ray transforms F Monard, R Nickl, GP Paternain The Annals of Statistics 47 (2), 1113-1147, 2019 | 69 | 2019 |
Nonparametric statistical inference for drift vector fields of multi-dimensional diffusions R Nickl, K Ray Annals of Statistics 48 (3), 1383-1408, 2020 | 66 | 2020 |