Suivre
Didi Zhu
Titre
Citée par
Citée par
Année
Towards effective clustered federated learning: A peer-to-peer framework with adaptive neighbor matching
Z Li, J Lu, S Luo, D Zhu, Y Shao, Y Li, Z Zhang, Y Wang, C Wu
IEEE Transactions on Big Data, 2022
56*2022
Model Tailor: Mitigating Catastrophic Forgetting in Multi-modal Large Language Models
D Zhu, Z Sun, Z Li, T Shen, K Yan, S Ding, K Kuang, C Wu
ICML 2024, 2024
252024
Universal domain adaptation via compressive attention matching
D Zhu, Y Li, J Yuan, Z Li, K Kuang, C Wu
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2023
252023
Generalized Universal Domain Adaptation with Generative Flow Networks
D Zhu, Y Li, Y Shao, J Hao, F Wu, K Kuang, J Xiao, C Wu
ACM International Conference on Multimedia (MM) 2023, 2023
162023
Neural collapse anchored prompt tuning for generalizable vision-language models
D Zhu, Z Li, M Zhang, J Yuan, J Liu, K Kuang, C Wu
Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and …, 2024
11*2024
Quantitatively Measuring and Contrastively Exploring Heterogeneity for Domain Generalization
Y Tong, J Yuan, M Zhang, D Zhu, K Zhang, F Wu, K Kuang
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), 2023, 2023
102023
Ensemble federated adversarial training with non-iid data
S Luo, D Zhu, Z Li, C Wu
FTL-IJCAI 2021, 2021
82021
Resmatch: Referring expression segmentation in a semi-supervised manner
Y Zang, R Cao, C Fu, D Zhu, M Zhang, W Hu, L Zhu, T Chen
Information Sciences 694, 121709, 2025
72025
Merging loras like playing lego: Pushing the modularity of lora to extremes through rank-wise clustering
Z Zhao, T Shen, D Zhu, Z Li, J Su, X Wang, K Kuang, F Wu
arXiv preprint arXiv:2409.16167, 2024
32024
Learn from Downstream and Be Yourself in Multimodal Large Language Model Fine-Tuning
W Huang, J Liang, Z Shi, D Zhu, G Wan, H Li, B Du, D Tao, M Ye
arXiv preprint arXiv:2411.10928, 2024
22024
Mix Data or Merge Models? Balancing the Helpfulness, Honesty, and Harmlessness of Large Language Model via Model Merging
J Yang, D Jin, A Tang, L Shen, D Zhu, Z Chen, D Wang, Q Cui, Z Zhang, ...
arXiv preprint arXiv:2502.06876, 2025
2025
Let Human Sketches Help: Empowering Challenging Image Segmentation Task with Freehand Sketches
Y Zang, R Cao, J Zhang, Y Han, Z Cao, W Hu, D Zhu, L Zhu, Z Li, D Ji, ...
arXiv preprint arXiv:2501.19329, 2025
2025
REMEDY: Recipe Merging Dynamics in Large Vision-Language Models
D Zhu, yibing Song, T Shen, Z Zhao, J Yang, M Zhang, C Wu
ICLR 2025, 2025
2025
Each Rank Could be an Expert: Single-Ranked Mixture of Experts LoRA for Multi-Task Learning
Z Zhao, Y Zhou, D Zhu, T Shen, X Wang, J Su, K Kuang, Z Wei, F Wu, ...
arXiv preprint arXiv:2501.15103, 2025
2025
An Adaptive Aggregation Method for Federated Learning via Meta Controller
T Shen, Z Li, Z Zhao, D Zhu, Z Lv, S Zhang, K Kuang, F Wu
Proceedings of the 6th ACM International Conference on Multimedia in Asia …, 2024
2024
Mitigating the Backdoor Effect for Multi-Task Model Merging via Safety-Aware Subspace
J Yang, A Tang, D Zhu, Z Chen, L Shen, F Wu
arXiv preprint arXiv:2410.13910, 2024
2024
Improving Group Connectivity for Generalization of Federated Deep Learning
Z Li, J Lin, Z Li, D Zhu, R Ye, T Shen, T Lin, C Wu
arXiv preprint arXiv:2402.18949, 2024
2024
Towards effective clustered federated learning: A peer-to-peer framework with adaptive neighbor matching
Z Li, J Lu, S Luo, D Zhu, Y Shao, Y Li, Z Zhang, Y Wang, C Wu
IEEE Transactions on Big Data, 2022
2022
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–18