Suivre
Elias Frantar
Elias Frantar
OpenAI
Adresse e-mail validée de openai.com
Titre
Citée par
Citée par
Année
GPTQ: Accurate post-training compression for generative pretrained transformers
E Frantar, S Ashkboos, T Hoefler, D Alistarh
arXiv preprint arXiv:2210.17323 1, 2022
1027*2022
Sparsegpt: Massive language models can be accurately pruned in one-shot
E Frantar, D Alistarh
International Conference on Machine Learning, 10323-10337, 2023
5472023
Optimal brain compression: A framework for accurate post-training quantization and pruning
E Frantar, D Alistarh
Advances in Neural Information Processing Systems 35, 4475-4488, 2022
2162022
Spqr: A sparse-quantized representation for near-lossless llm weight compression
T Dettmers, R Svirschevski, V Egiazarian, D Kuznedelev, E Frantar, ...
arXiv preprint arXiv:2306.03078, 2023
1972023
The optimal bert surgeon: Scalable and accurate second-order pruning for large language models
E Kurtic, D Campos, T Nguyen, E Frantar, M Kurtz, B Fineran, M Goin, ...
arXiv preprint arXiv:2203.07259, 2022
1302022
M-fac: Efficient matrix-free approximations of second-order information
E Frantar, E Kurtic, D Alistarh
Advances in Neural Information Processing Systems 34, 14873-14886, 2021
602021
Extreme compression of large language models via additive quantization
V Egiazarian, A Panferov, D Kuznedelev, E Frantar, A Babenko, D Alistarh
arXiv preprint arXiv:2401.06118, 2024
592024
Ziplm: Hardware-aware structured pruning of language models
E Kurtic, E Frantar, D Alistarh
arXiv preprint arXiv:2302.04089 3 (7), 2023
52*2023
SPDY: Accurate pruning with speedup guarantees
E Frantar, D Alistarh
International Conference on Machine Learning, 6726-6743, 2022
412022
Towards end-to-end 4-bit inference on generative large language models
S Ashkboos, I Markov, E Frantar, T Zhong, X Wang, J Ren, T Hoefler, ...
arXiv preprint arXiv:2310.09259, 2023
272023
On the sample complexity of adversarial multi-source pac learning
N Konstantinov, E Frantar, D Alistarh, C Lampert
International Conference on Machine Learning, 5416-5425, 2020
252020
QMoE: Sub-1-Bit Compression of Trillion Parameter Models
E Frantar, D Alistarh
Proceedings of Machine Learning and Systems 6, 439-451, 2024
21*2024
Marlin: a fast 4-bit inference kernel for medium batchsizes
E Frantar, D Alistarh
21*2024
Sparse finetuning for inference acceleration of large language models
E Kurtic, D Kuznedelev, E Frantar, M Goin, D Alistarh
arXiv preprint arXiv:2310.06927, 2023
162023
Scaling laws for sparsely-connected foundation models
E Frantar, C Riquelme, N Houlsby, D Alistarh, U Evci
arXiv preprint arXiv:2309.08520, 2023
162023
Cap: Correlation-aware pruning for highly-accurate sparse vision models
D Kuznedelev, E Kurtić, E Frantar, D Alistarh
Advances in Neural Information Processing Systems 36, 2024
14*2024
L-GreCo: Layerwise-adaptive Gradient Compression For Efficient Data-parallel Deep Learning
I Markov, K Alim, E Frantar, D Alistarh
Proceedings of Machine Learning and Systems 6, 312-324, 2024
8*2024
Accurate neural network pruning requires rethinking sparse optimization
D Kuznedelev, E Kurtic, E Iofinova, E Frantar, A Peste, D Alistarh
arXiv preprint arXiv:2308.02060, 2023
82023
JaxPruner: A concise library for sparsity research
JH Lee, W Park, NE Mitchell, J Pilault, JSO Ceron, HB Kim, N Lee, ...
Conference on Parsimony and Learning, 515-528, 2024
62024
QIGen: Generating Efficient Kernels for Quantized Inference on Large Language Models
T Pegolotti, E Frantar, D Alistarh, M Püschel
arXiv preprint arXiv:2307.03738, 2023
6*2023
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20