Suivre
Ryotaro Shimizu
Ryotaro Shimizu
ZOZO Research, Waseda University, and University of California San Diego
Adresse e-mail validée de ucsd.edu
Titre
Citée par
Citée par
Année
An explainable recommendation framework based on an improved knowledge graph attention network with massive volumes of side information
R Shimizu, M Matsutani, M Goto
Knowledge-Based Systems 239, 107970, 2022
732022
Fashion intelligence system: An outfit interpretation utilizing images and rich abstract tags
R Shimizu, Y Saito, M Matsutani, M Goto
Expert Systems with Applications 213, 119167, 2023
272023
Multiple treatment effect estimation for business analytics using observational data
Y Tsuboi, Y Sakai, R Shimizu, M Goto
Cogent Engineering 11 (1), 2300557, 2024
7*2024
On permutation-invariant neural networks
M Kimura, R Shimizu, Y Hirakawa, R Goto, Y Saito
arXiv preprint arXiv:2403.17410, 2024
52024
Partial visual-semantic embedding: Fine-grained outfit image representation with massive volumes of tags via angular-based contrastive learning
R Shimizu, T Nakamura, M Goto
Knowledge-Based Systems 277, 110791, 2023
52023
Fashion-Specific Ambiguous Expression Interpretation with Partial Visual-Semantic Embedding
R Shimizu, T Nakamura, M Goto
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2023
52023
Fashion-specific attributes interpretation via dual gaussian visual-semantic embedding
R Shimizu, M Kimura, M Goto
arXiv preprint arXiv:2210.17417, 2022
52022
A latent class analysis for item demand based on temperature difference and store characteristics
Y Seko, R Shimizu, G Kumoi, T Yoshikai, M Goto
Industrial Engineering & Management Systems 20 (1), 35-47, 2021
52021
Augmenting NER Datasets with LLMs: Towards Automated and Refined Annotation
Y Naraki, R Yamaki, Y Ikeda, T Horie, K Yoshida, R Shimizu, ...
arXiv preprint arXiv:2404.01334, 2024
42024
Recommendation item selection algorithm considering the recommendation region in embedding space and new evaluation Metric
T Amano, R Shimizu, M Goto
Industrial Engineering & Management Systems 22 (3), 340-348, 2023
42023
An Empirical Analysis of GPT-4V's Performance on Fashion Aesthetic Evaluation
Y Hirakawa, T Wada, K Morishita, R Shimizu, T Furusawa, SH Kham, ...
SIGGRAPH Asia 2024 Technical Communications, 1-4, 2024
32024
Latent variable models for integrated analysis of credit and point usage history data on rewards credit card system
R Shimizu, H Yamashita, M Ueda, R Tanaka, T Tachibana, M Goto
International Business Research 13 (3), 106-117, 2020
32020
Proposal of a Purchase Behavior Analysis Model on an Electronic Commerce Site Using Questionnaire Data
R Shimizu, T Sakamoto, H Yamashita, M Goto
Total Quality Science 4 (1), 1-12, 2018
32018
Lare: Latent augmentation using regional embedding with vision-language model
K Sakurai, T Ishii, R Shimizu, L Song, M Goto
arXiv preprint arXiv:2409.12597, 2024
22024
Optimizing FT-Transformer: Sparse Attention for Improved Performance and Interpretability
T Isomura, R Shimizu, M Goto
Industrial Engineering & Management Systems 23 (2), 253-266, 2024
22024
A Fashion Item Recommendation Model in Hyperbolic Space
R Shimizu, Y Wang, M Kimura, Y Hirakawa, T Wada, Y Saito, J McAuley
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2024
22024
アンケートデータを考慮した EC サイトの購買履歴分析モデルの提案
清水良太郎, 坂元哲平, 山下遥, 後藤正幸
経営システム= Communications of Japan Industrial Management Association 27 …, 2017
22017
LLMOverTab: Tabular data augmentation with language model-driven oversampling
T Isomura, R Shimizu, M Goto
Expert Systems with Applications 264, 125852, 2025
1*2025
Effectiveness verification framework for coupon distribution marketing measure considering users’ potential purchase intentions
A Yoneda, R Shimizu, S Sakurai, M Kawata, H Yamashita, M Goto
Cogent Engineering 11 (1), 2307718, 2024
12024
Disentangling Likes and Dislikes in Personalized Generative Explainable Recommendation
R Shimizu, T Wada, Y Wang, J Kruse, S O'Brien, S HtaungKham, L Song, ...
arXiv preprint arXiv:2410.13248, 2024
12024
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20