Suivre
Charles Hong
Charles Hong
Adresse e-mail validée de berkeley.edu
Titre
Citée par
Citée par
Année
Learning a continuous and reconstructible latent space for hardware accelerator design
Q Huang, C Hong, J Wawrzynek, M Subedar, YS Shao
2022 IEEE International Symposium on Performance Analysis of Systems and …, 2022
242022
Dosa: Differentiable model-based one-loop search for dnn accelerators
C Hong, Q Huang, G Dinh, M Subedar, YS Shao
Proceedings of the 56th Annual IEEE/ACM International Symposium on …, 2023
182023
A Chipyard Comparison of NVDLA and Gemmini
A Gonzalez, C Hong
Berkeley, CA, USA, Tech. Rep. EE290-2, 2020
72020
Sample-Efficient Mapspace Optimization for DNN Accelerators with Bayesian Learning
G Dinh, IKJ Valsala, H Luo, C Hong, Y Cho, J Demmel, S Li, Y Liu
Architecture and System Support for Transformer Models (ASSYST@ ISCA 2023), 2023
22023
Polaris: Multi-Fidelity Design Space Exploration of Deep Learning Accelerators
C Sakhuja, C Hong, C Lin
arXiv preprint arXiv:2412.15548, 2024
2024
LLM-Aided Compilation for Tensor Accelerators
C Hong, S Bhatia, A Haan, SK Dong, D Nikiforov, A Cheung, YS Shao
2024 IEEE LLM Aided Design Workshop (LAD), 1-14, 2024
2024
Predicting Performance of Deep Neural Network Schedules Across Accelerator Designs
C Hong
MICRO ACM Student Research Competition, 2021
2021
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–7